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Partial cone crack formation in a brittle material loaded
with a sliding spherical indenter

By B. R. Lawn*
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[Plate 3]

In the preceding paper Frank & Lawn (1967%) investigated theoretically the development of a
cone crack in the strongly inhomogeneous Hertzian stress field. The analysis outlined in that
paper is now extended to incorporate & sliding motion of the spherical indenter across the
specimen surface, assuming a uniform coefficient of friction over the contact area. Sliding is
found to have a large influence on the quasistatic stress field in the loaded specimen, and thisin
turn affects the ultimate geometry of the cracks. The precise shape of the partially developed
cones thus formed is a function only of the Poisson ratio of the specimen material and the
coefficient of friction. Criteria determining when surface fracture will occur, expressed as
relationships between the critical normal load P, acting on the specimen and the indenter
radius r, are calculated as before. The Auerbach law found for purely normally loaded speci-
mens, namely that P, is proportional to r, over a certain range of r, should cease to hold
when the coefficient of friction exceeds about 0-02. P, then becomes very nearly proportional
to 7%, which corresponds to & critical stress criterion. The effect of sliding on the value of P,
becomes large with larger values of the coefficient of friction; this is of particular relevance
to studies of the surface damage of brittle materials.

1. INTRODUCTION

The mechanism of cone crack formation in a brittle material loaded normally with
a hard spherical indenter is more clearly understood when the inhomogeneous stress
field through which the crack propagates is considered in detail (Frank & Lawn
1967, preceding paper). The criteria determining when a cone crack will develop,
generally expressed as relations between critical normal load P, and indenter
radius 7, follow directly from such considerations. It is of interest to attempt to
extend the analysis to the case where the indenter is moved across the specimen
surface at constant velocity. Under such conditions a composite track of approxi-
mately evenly spaced ‘partial’ cone cracks is formed when the critical normal load
is attained. (The term ‘partial’ has found frequent usage in the literature because
of the incompleted arcuate trace of each individual crack on the specimen surface.)
These tracks have a fundamental relevance to mechanical properties, such as
abrasion, of hard materials. This relevance indeed forms the basis for the experi-
mental investigations of Preston (1922) on glass and Seal (1958) on diamond
surfaces. Since the quasistatic stress field around a sliding contact area is well defined
and has been solved analytically (Hamilton & Goodman 1966) we may proceed as
before and determine the fracture conditions as the coefficient of friction f between
indenter and flat surface varies. It will be seen that the frictional tractions exert an
appreciable influence both upon these conditions and on the geometry of the partial
cone cracks.
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The treatment below makes a few assumptions. The contact between indenter
and specimen is taken to be free of ‘stick-slip’ motion (Mindlin 1949) and the
indenter and specimen are taken to behave like purely elastic and elastic-brittle
solids respectively. In many cases deviations from such idealized behaviour will
occur; for instance, Bowden & Brookes (1966) have shown that the sliding action
of an indenter may produce dislocation-nucleated cracks in magnesium oxide,
a material generally regarded as highly brittle. However, such complications will be
neglected in the following treatment. '

2. STRESS FIELD AND CRACK GEOMETRY

In discussing the behaviour of crack propagation in an isotropic material we are
concerned with the distribution of the maximum principal stress throughout the
specimen: in a crystalline material the anisotropy of y (surface energy of specimen)
complicates the issue and crack propagation depends on the orientation of favour-
able cleavage planesin the stress field and on the stresses resolved along these planes.
With regard to isotropic materials it was argued by Frank & Lawn (1967) that a
crack in a strongly inhomogeneous stress field would tend to follow the surface
defined by the two lesser of the three principal stresses, with the reservation that it
would ‘swing wide’ on the bends where the trajectory surface became grossly curved.
The evidence from studies on conventionally produced cone cracks showed excellent
agreement with this hypothesis. A second feature necessary for a quantitative study
of the fracture mechanism is that the ring crack initiate at or close to the circle of
contact, where the tensile stress in the specimen reached its greatest value. This also
has some experimental support. Both these features are readily extended to the
case where an extra sliding motion of the indenter occurs. The position of greatest
tensile stress still occurs on the circle of contact, for all f, at the trailing edge of the
indenter. The distribution of the maximum principal stress, o, is shown in figure 1
for two values of f, 0-1 and 0-5 (Poisson’s ratio v taken to be 1). It is noted that the
tensile stress contours tend to crowd around the trailing edge as f increases, but
correspondingly become less shallow beneath the surface. It was this shallow stress
distribution which accounted for Auerbach’s law for the normally loaded case. The
value of the greatest tensile stress, from the analysis of Hamilton & Goodman, is
given by

om = (14 15:5f) (§ —v) pos (2-1)

where p, is the mean pressure P[ma?, a being the radius of contact area, given in

turn by
a® = $kPr|E (2-2)

from the Hertz analysis. £ is Young’s modulus and k is defined by
k= Fsl(1—v%) +(E[E") (1-v?)], (23)

where the primes refer to the indenter material. £ becomes unity if indenter and
specimen are of the same substance, reducing to about 0-5 for an ideally rigid
indenter.
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Included in figure 1 are the stress trajectories of o as drawn from the point of om.
We note that they become less curved as fincreases so we may regard, with increas-
ing confidence, the o,—0; trajectory surface as a delineator of the crack path. The
principal stress o,, which for the case of zero friction was a ‘hoop stress’ with
symmetry about the axis through the centre of contact, departs from this circular
symmetry, as shown by traces of its trajectories on the specimen surface. This
predicts that crack traces become less curved at higher values of f, and that the
crack may not completely encircle the area of contact as the crack propagates into
the region of reduced tensile stress. Further, since the tensile stresses beneath the
specimen surface are relatively small near the front end of the indenter the likelihood
of the cone crack developing into this region, except under excessive loading condi-
tions, appears increasingly remote.
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Ficure 1. Half-surface view and side view of contours of greatest principal stress, o, in
semi-infinite elastic medium (surface SS) in contact (diameter of contact AA) with
spherical indenter. (a) f = 0-1, (b) f = 0-5. p, is the unit of stress. c.z. is the compressive
zone in which all three principal stresses are negative. Broken lines are o, (surface view)
and o (side view) stress trajectories drawn from place of greatest tensile stress in the
specimen. Indenter slides from left to right.

Experimental evidence is in excellent qualitative agreement with all above
features of the hypothetical crack geometry, and we will therefore adopt these as a
basis for establishing a more quantitative approach in § 3. A simple experiment will
serve here to illustrate some of the details described above. Figure 2, plate 3, shows
a partial ring crack produced by dropping a steel sphere, radius 0-875cm, on to
lin. thick plate glass inclined at about 45° to the horizontal, from a height of about
7 cm. The ball, being greased, has left a trace of the contact area, which, being very
nearly circular, indicates that the ball has not slid far down the specimen surface.
A detailed consideration of the mechanics of this arrangement suggests that the
assumption that a superposed normal load and constant velocity sliding force
operate at the instant of fracture is at least approximately satisfied. The fact that
the contact between ball and glass was a well lubricated one suggests that the
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coefficient of friction was low, probably about 0-1. Comparison of figure 2 with
figure 5 in the paper by Frank & Lawn permits a ready appraisal of the effect of
a small frictional force on the surface trace of a cone crack. Observation of the crack
shown in figure 2 below the surface of the glass indeed showed the ‘tail’ of the crack
to extend relatively deeply into the material from the trailing edge, at an angle to
the surface roughly equal to that shown in figure 1(a) corresponding to f = 0-1.
That the crack initiated from very near to the trailing edge of the indenter and grew
downward and outward from this point may be inferred by a close examination of
subsurface cracks. The precise location of the partial cone cracks with respect to
their area of contact was generally subject to some statistical variation in much the
same way as those discussed in the paper on conventionally produced cone cracks.

The familiar composite fracture tracks produced when indenters slide over a clean
surface (§ 1) provide information on the effect of higher frictional tractions on crack
geometry. Preston’s classical descriptions of surface and cross-sectional traces of
individual partial cone cracks comprising such fracture tracks on glass surfaces
(Preston 1922) are in complete accord with the features of crack geometry indicated
by the o, and o stress trajectories in figure 1(b).

The principles of cone crack geometry discussed in this section may be applied,
with caution, to the production of surface cracking in crystalline materials. A
rigorous investigation of the mechanics of crack production must take into account
the orientation of ‘easy’ cleavage planes with respect to the stress field, which in
turn involves the direction of motion of the slider. Such an analysis is not considered
here. However, we may note in passing the relative complexity of the crystalline
case with reference to the example shown in figure 3. Here we see a ‘chatter’ track
on an octahedron surface of a natural diamond. On the normally loaded octahedron
surface of diamond it requires considerably less load to propagate a crack along
a cleavage plane extending away from the compressive zone under the indenter. The
ease of production of the scratch shown in figure 3, plate 3, therefore may depend
a great deal on whether or not the cleavage plane whose surface trace lies perpendi-
cular to the direction of motion of the scratching particle extends towards or away
from this direction. A scratch in the opposite direction may be correspondingly easier
or more difficult to produce.

3. FRACTURE CRITERIA

Having established a basis for calculating the prior stresses along the proposed
crack path we may now proceed in a more quantitative manner. Before doing so we
consider the following points concerning the crack path. First, the crack is taken to
lie in a plane normal to the surface of the specimen. This assumption becomes un-
reliable when the length of the crack approaches the radius of curvature of the crack
surface. Further, as f increases the gradient of tensile stress along the o, trajectory
becomes increasingly large, and will lead to further deviations from a situation of
plane strain. However, as the fracture criteria are generally determined by the
behaviour of the crack at lengths small compared with a, we may disregard these
difficulties and merely treat the solutions at large crack lengths as rough indicators
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surface of a natural diamond. Width of track about 1 gm. Dircction

of seratching from bottom left to top right of micrograph.

Grease patch, radius ¢ = 0-049 cimn, reveals area of contact. Arrow indicates

line of impact.

Ficure 2. Surface view (reflected light) of partial conc crack formed by  Freume 3. Electron micrograph of replica taken from an octahedron
dropping a steel ball, radius » = 0-875 em, on to an inclined glass plate.

(Facing p. 310)
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of ultimate crack behaviour. We accordingly begin by considering the distribution
of tensile stress o, as a function of distance b along the o trajectory drawn from the
trailing edge of the indenter: this is shown for four values of f in figure 4. The large
influence of the frictional tractions is apparent, and it is pointed out that o, falls off
less steeply with b as f increases.
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Ficure 4. Plot of 0,/p, as a function of relative distance b/a along crack path.
Plots shown for f = 0, 0-1, 0-5, 1-0.

In Irwin’s (1958) notation the Griffith (1920) condition that a crack will extend
may be written
Y = (mE)(1—v3) 2> 2y (3:1)
for a surface crack of length ¢ in a semi-infinite elastic medium, where ¥ is the
strain energy release rate and ¢ is the stress intensity factor. For a plane crack loaded
along its faces with normal prior stresses o(b) we have

2 ¢ o(b)db
KN = — % —_—
A= fo (c—b)F

We see from figures 1 and 4 that by expressing stresses in units of p, and lengths in
units of @ we need not consider the size of the indenter. Expressing the quantities
in o in terms of these units, and putting oy = o(b), we obtain

2 (c\¥ [l oylpyd(bla) .
H = ;r(&) po“}fo (czllazo_bzlaz),}' (3-2)
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As we shall see later we will be comparing the behaviour of crack propagation of the
cone cracks with that of a Griffith-like crack. For this purpose it is convenient to
write
/
I = g £(_)_ fca 0'1/2’0d(b/“) (33)

= om o (‘é’éﬁ@jbz/?)—%:

so that the integral I assumes the value unity for a Griffith crack (o, = om = con-
stant). In general, because o, is always less than oy except at b = 0, we will have
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FicUre 5. Plot of (¢/a) I? as function of relative crack length c/a. Curves for various f values are
shown, together with the straight line corresponding to a Griffith-like crack.

I < 1. The condition (3-1) may now be rewritten, with the aid of (3-3), (3-2) and (2-1),
in the form 8 vE 1 1

gI2> — —
a m (1—v2) (1—2v)2 (1+15-5f) p2a’

Rearranging pia, making use of (2-2), in the form

13EP
2 = — — — .
P =54k 7 (3:4)
we obtain ¢ pas 327 Icy_ 1 , i
a 3 1-1»)(1—-2v)%(1+155()2 P (3:5)

The quantity (c/a)I? may be regarded as a measure of the rate of release of strain
energy as the crack extends. Plots of this quantity as a function of ¢/a, for various
values of f, are shown in figure 5. On this graph the curve representing a Griffith-like
crack is a straight line of slope unity: the curves for the partial cone cracks fall below
this line, as expected. It is seen that the cracks, particularly those corresponding to
higher f values, are more Griffith-like in behaviour at small ¢, all curves (necessarily)
approaching each other to merge at the origin.
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The phenomenon of crack growth may now be conveniently represented by the
following graphical representation of (3-5). For a given indenter and specimen the
right hand side of this inequality, being independent of (¢/a), may be drawn as a
horizontal straight line in figure 5. Let us describe this horizontal line by its ordinate
value H: we note that for a given load H is a function of material constants, the
coefficient of friction, and the radius of the indenter, all of which are assumed to
remain invariant for a given experiment. H, if it intersects the appropriate (c¢/a)I®
curve at all, will do so in at least two places. In accordance with previous notation
we will denote the values of crack length corresponding to these intersections as ¢,
and cg, with ¢, < ¢;. As seen from figure 5 there will, except for f < 0-02, be only two
intersections. For the small exceptional range 0 < f < 0-02 H may intersect the
curve at two intermediate values of crack length, ¢, and c,. A crack of length ¢, with
indenter load P, is then represented by a point (¢/a, H). The behaviour of the crack
is determined by the location of this point in figure 5: three distinct types of crack
behaviour may be distinguished. First, as P increases from zero (c/a, H) migrates
from (00,00) down a straight line of slope three on the double-logarithmic plot
(H being proportional to P~ and ¢/a proportional to P—¥) toward the (c/a) I curves.
Until it intersects the appropriate curve the condition (3-5) remains unsatisfied and
no crack extension can occur. The second and third types of crack behaviour there-
fore become realised when intersection occurs. If the slope of the (c/a)I2 curve at
this point is positive the crack will grow unstably along the H line, which represents
crack extension under constant loading conditions. The crack will ultimately
become arrested if (c/a)I? falls below H again (for the Griffith crack this will, of
course, never occur). If, at intersection, the slope of the curve is negative, ¢ will
extend in a stable manner, following the (c¢/a) 12 curve as the load is increased (and
H is depressed), until such stage as the slope becomes positive and the crack becomes
unstable again.

The treatment above requires the presence of a crack prior to loading: pre-
existing microscopic flaws, ¢; in length, must now be invoked, as in the Griffith
treatment, to explain the observed behaviour. The load is then increased until the
condition (ct/a)I? > H is satisfied. Treating first the range f > 0-02 we see that if
¢; = ¢, when this condition is achieved the crack will become unstable and grow
(under constant load) to the stable length c;, until the curve falls below the H
line again. If, however, ¢, = ¢;, the crack is already stable, and will grow only if
the load is increased still further. Writing P, for the critical load required to
satisfy the fracture criterion above, and eliminating a (using (2-2)), we have

P, _ 256,/(27°) K2yt 1 11
T 9 BN 1-»)i(1—20)8 (1+155/F R b

(3-6)

For the Griffith-like crack I is unity and the right hand side of (3-6) is independent
of loading conditions. P;/r?is then constant, and (3-6) corresponds to a critical stress
criterion for fracture. However, we observe that I is, in reality, a function of H, and
therefore of P, in such a way that P, becomes proportional to 72— If, as is generally
realized in practice, ¢; < a, the cracks will behave in a near Griffith-like manner, and
n will not deviate excessively from zero. Turning now to the range f < 0-02 we find



314 B. R. Lawn

that, for a certain range of ¢;, we have four intersections of H with the curves in
figure 5. If, in this range, ¢; = ¢, when the fracture criterion (3-5) is satisfied, the
crack will proceed unstably to ¢,. In the preceding paper it was pointed out that the
stable crack c, passes unobserved: to produce a visible crack H must therefore be
depressed below the minimum in the (c/a)I? curve. The length c* of the crack
corresponding to this minimum (the asterisk will hereafter be used to denote any
quantity corresponding to ¢ = c*) is, unlike ¢, proportional to a: this explains the
difference between the Griffith-like behaviour discussed above and the present
(Auerbach) behaviour. Writing, for the latter, [(c/a) [2]* (= constant) > H, we have

P* 327 ky 1 1

r 3 (1—1®) (1—2v)2 (1+15'5f)2 [(c/a) I2]*
Since the Auerbach-like crack is of relatively little relevance here it will not be
discussed to any great extent.

Since we are interested in the relative ease of surface crack production on materials
due to a normally loaded and a sliding indenter it is convenient to express P in
terms of the static load P§ (i.e. with f = 0) required to produce a conventional cone
fracture within the limit of validity of Auerbach’s law. Comparing (3-7) with (3:6),
and evaluating the numerical factor [(c/a)I%]* from figure 5, we have

k(y/E)} 1 r
¢ _ g -3 —_
pr = T i) (% 15-5f)% I3 c}
Taking, for a steel ball sliding on glass, v = 500erg/cm?, E = 7 x 10*dyn/cm?,
ct~1x10~%cm, k~ %, v=1, I} ~ },r=0-3cm, (3-8) reduces to

P, ~ 0-2P¥/(1+15-5f)3,
so long as f > 0-02. This predicts that for a coefficient of friction as low as 0-1 the
load necessary to initiate cone fracture may well be reduced by a factor of 100 or
more. For smaller radius indenters this factor will increase still further: this last
fact has implications when abrasion mechanisms are considered.

(37)

(38)

4. Di1scussSION

In §2 it was shown that the o,—0 stress trajectory surface, drawn through the
position of greatest tensile stress in the specimen, gives a reasonably faithful indica-
tion of the ultimate shape of a partial cone crack. In this treatment o, was assumed
to be always the greatest principal stress: within the region around the indenter
illustrated in figure 1 this assumption is never violated. However, for crack lengths
¢ > a, 0, may become at least comparable with o, especially for large f, and may
lead to complications in crack geometry if the crack becomes deflected from its
initial, well defined path. Some of Preston’s photographs of surface traces of partial
cone cracks show a related secondary effect; they reveal a second set of cracks whose
individual members intersect the primary cracks discussed in § 2 very nearly ortho-
gonally, as if their direction were dictated by the o, trajectories (that is, by the o,
stresses). Although o, is relatively small compared with o, it is positive in the region
where the secondary cracks appear, for f ~ 0-5; a full understanding of these cracks
is not within the scope of the present treatment.
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Equation (3-8) demonstrated that the introduction of a sliding motion to a
normally loaded spherical indenter, on a brittle surface, significantly increases the
ease of production of a partial cone fracture. This occurs for two reasons; first,
because sliding increases the tensile stresses in the wake of the indenter; and,
secondly, because, for f greater than about 0-02, the crack no longer requires to
satisfy the Auerbach criterion, the latter requiring additional load to push the stable
crack ¢, past ¢*. Quantitative verification of this treatment is difficult to obtain
because of experimental deviations from the idealized situation assumed in §1.
Most published work has been performed on glass surfaces; if the indenter is harder
than the glass some plastic grooving on the specimen surface, due to prominent
asperities on the slider, is often observed, while if the indenter is relatively soft some
adhesion, via plastic junctions, may occur. These effects will tend to violate the
validity of the Hertzian elastic analysis. The second effect was observed by Ghering
& Turnbull (1940), who measured the minimum load required to scratch glass
surfaces with hemispherically tipped metal rods. Metal traces were left on the
scratched glass surfaces, and the indenters were observed to have deformed notice-
ably after the experiments, which almost certainly means that the quoted critical
loads are over-estimates. For instance, for a steel rod of tip radius 0-3 cm the critical
load required to produce a fracture track was 0-23 Kg. From the data of Preston
(1945) (Preston’s experiments were performed in the same laboratories, and,
presumably, on similar glasses to those of Ghering & Turnbull) the critical load P§
required to induce a cone crack under purely normal loading, for a steel ball of the
same radius as used by Ghering & Turnbull, is about 35 Kg. Thus the effect of sliding
is to reduce the critical load required to produce visible cone fracture by a factor of
about 150. Equation (3-8) (and the use of the values cited for the parameters in the
example illustrating this equation) would give agreement with this factor if f were
to be about 0-14. Southwick (1958), quoted by Holland (1964), measured f for steel
on glass, under similar experimental conditions, and found a value of 0-6, but he
used a larger radius hemispherical tip and a larger applied load than Ghering &
Turnbull, both of which would tend to increase f. However, the real coefficient is not
likely to be as low as 0-14, and the reason for the discrepancy between experiment
and theory may be due to either the deformed indenter, as mentioned above, or the
gross uncertainty of the parameters inserted into (3-8), or a combination of both, or
to the inadequacy of the assumptions in developing the theory. In any case the point
emphasized by the theoretical treatment, that sliding is of utmost importance when
considering surface damage, does have at least some qualitative experimental
backing.

Finally, it is pointed out that brittle materials may easily suffer surface damage
when small particles rub across their surface under reasonably small loads. Thus the
scratch on the diamond surface shown in figure 3 may well have originated as the
stone went through its mining process, and may have been caused by a particle
considerably softer than diamond itself (Tolansky & Howes 1957). Such surface
cracks will not heal perfectly and the surrounding crystal will be left in a state of
residual elastic stress (Lawn & Komatsu 1966). The cumulative effects of many
scratches may therefore introduce considerable surface compression. This effect is
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vividly demonstrated by X-ray topographs of diamonds whose surfaces have been
subjected to micro-abrasion tests (Frank, Lang, Lawn & Wilks, in preparation).

The author wishes to express his gratitude to Professor F.C. Frank, F.R.S., for
his interest in this work and for numerous discussions. He is also indebted to
Industrial Distributors Ltd. for a Research Fellowship.
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