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ABSTRACT

The use of X-ray topographic techniques for studying elastic strains in
crystals deformed at their surfaces is becoming widespread, especially in the field
of silicon semiconductor devices. Although the broad features of the phenomeno-
logical processes involved in producing the strain patterns on the X-ray micrographs
are understood, little attention has been devoted to evaluating the detailed nature
or range of the strain fields in the crystal. In this paper, an elastic model is proposed
for cases in which a region of crystal surface is uniformly deformed over a thin
layer. With this model, the associated strain field in the surrounding crystal, which
is readily computed from elasticity theory, may be characterized by a single
parameter. The model is in accord with observed strain patterns on topographs of
abraded diamond surfaces and silicon surfaces onto which a strip of metal film has
been evaporated. From the spatial range of the diffraction contrast, an estimate of
the parameter characterizing the strain field may be made.

INTRODUCTION

In recent years, the methods of X-ray topography have found increasing application
in the study of elastic strains in crystal surfaces. Such strains may be introduced by any
process which deforms the crystal surface and thus leaves it in a state of residual stress.
Partial relief of the residual stress is then manifested as an elastic distortion of the crystal
matrix surrounding the deformed region of surface, provided, of course, no plastic flow
occurs. The edges of metal strips evaporated onto silicon substrates® and the boundaries
of parts of crystal surface damaged by mechanical abrasion,? particle or photon irradia-
tion,® or chemical effects such as surface diffusion and oxidation!* are examples of
regions where elastic strain fields have been detected by X-ray diffraction contrast.
The existence of this type of strain field is of interest from a practical as well as an academic
standpoint. For instance, the presence of the elastic strains at the edges of evaporated
thin films is believed to be an instrumental factor in the breakdown of semiconductor
devices.

Most attention in the studies performed to date has been directed toward a basic
understanding of the physical processes causing the elastic strains and to a qualitative
interpretation of the associated diffraction contrast on the topographs. This paper is
concerned more with the nature and magnitude of the elastic strain field itself. An elastic
model is first proposed in which the strain field can be calculated and characterized by a
single parameter. The diffraction contrast on X-ray topographs is then examined and
used to verify the essential predictions of the model. Finally, from a mcasurement of the
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range of observable diffraction contrast, an estimate of the characterizing strain parameter
is made.

ELASTIC MODEL

In the interest of simplicity, we specify the following assumptions: (1) The strains
in the matrix crystal are taken to be representable by the equations of linear isotropic
elasticity; (2) the depth 3 of the deformed surface layer of crystal is assumed small com-
pared to the surface dimensions of the layer, which are in turn assumed small compared
to the dimensions of the crystal itself; (3) the deformation is considered uniformly
distributed throughout the deformed region of crystal at the surface. Thus, we have as
our model an otherwise perfect semi-infinite crystal matrix with a thin isotropic layer of
“bad” crystal embedded in its surface.

The strain field in crystal surrounding a deformed surface layer of arbitrary shape
may now be computed in the following manner. Let us consider the residual stress in
the bad layer compressive (tension will simply reverse the sign of the strains) so that the
layer must expand to relieve the stresses. Since 8 is small, this tendency to expand will
give rise to an outwardly directed normal pressure p, very nearly parallel to the crystal
surface, on the matrix at the peripheral boundary of the layer. By Saint-Venant’s principle,
as long as we do not concern ourselves with the strain situation within distances 8 of
the periphery, we may consider the pressure p equivalent to a line force F per unit of
length of the periphery. Writing n as a unit vector lying in the crystal surface and
directed perpendicularly outward from the periphery of the bad layer (Figure 1), we
then have F = pdn. Defining a system of cartesian coordinates by the unit vectors
X;, X5, X3, We can now compute the displacements at any point (x;, x5, ¥3) in the crystal
owing to an effective point force Fdl at (x'l, x;, 0) and, by integrating around the entire
periphery of the bad layer, the total displacement field may be determined. Following
Landau and Lifshitz,> we arrive at an expression of the following type for the ith com-
ponent of the displacement vector:

F
u = E§ Gi(xy — %7, x5 — %5, X3, v)m; dl 1)

where I is Young’s modulus; v is Poisson’s ratio; 7, is the component of n in the direction
x,; the G, are given by Landau and Lifshitz;® and & is a repeated suffix. In equation (1),
F is assumed constant everywhere on the periphery (this assumption demands further
consideration in special instances). From equation (1), the strain field may be established
for any shape of periphery of bad crystal. A high-speed computer is generally required to
perform the calculations. Such calculations have been done for elliptical microabrasion
patches on surfaces of diamond.2

7

Figure 1. The force exerted by a deformed surface layer on a
crystal matrix.
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Figure 2. Distortion of the crystal lattice due to i \

residual compressive stress in the deformed layer. I | I I

In the present paper, we can choose a particularly simple peripheral geometry without
loss in generality. We take the bad layer to be a long strip parallel to x; with edges at
X, = tw and thickness 8 measured in direction x5. Such a description probably applies
reasonably well to the strips of metal evaporated onto silicon surfaces.! Solutions for the
strain field may be computed from equation (1) or, alternatively (for this particular case)
from the two-dimensional solution for straight-line forces in a surface given by Timo-
shenko and Goodier® and others. The expressions for the displacements and strains are
too cumbersome to be given here. Instead, the displacements are displayed in schematic
form in Figure 2 as a distorted lattice for an arbitrary value of F.

SOME VERIFICATIONS OF THE MODEL

The object of this section is to provide evidence supporting the model outlined in
the previous section.

Optical Examination of the Crystal Surface

One of the predictions of the elastic model is readily investigated by optical means.
As seen in Figure 2, the crystal surface surrounding the embedded bad layer is flat, a
prediction which turns out to be independent of the peripheral shape of the layer. The
crystal surfaces surrounding elliptical abrasion patches on diamond and evaporated
metal strips on silicon are indeed found to be flat (allowing for original surface roughness)
within the limits of detection of interference microscopy. The model similarly predicts
that the central, deformed region of the surface will be raised or lowered slightly according
to whether the direction of F is outward or inward, but the very nature of the deforming
mechanism precludes any observation of such an effect in the cases studied here. In the
case of the abraded diamond, some material is removed from the surface, and, in the case
of the metal strip on the silicon substrate, the thickness of the evaporated strip obscures
any measurement. However, in the latter case, the top surface of the strip is found to be
flat, as the model would predict for a uniformly thick layer.

X-Ray Topographs of the Crystals

The optical examinations mentioned above provide no indication that the crystal
might be in a state of residual strain. However, the extremely strain-sensitive techniques
of X-ray topography” reveal quite plainly the presence of the strain field, as seen in
Figures 3 and 4 (taken under the usual experimental arrangement in which the angular
divergence of the incident X-ray beam greatly exceeds the range of reflection of the perfect
crystal). In Figure 3 are seen topographic images of the elastic strains around the edges
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(a) (b)

Figure 3. X-ray transmission topographs of elliptical abrasion
patches on the (111) face of a natural diamond; Mo K« radiation;
(a) 220 and (b) 220 reflections; the arrows denote g vectors; the
mean diameter of patches is 220 pum; and § ~ 1 to 10 um.

Figure 4. X-ray transmission topographs of a silicon wedge with an
aluminum strip evaporated onto the X-ray exit surface; the arrows
indicate values of ut at each end of wedge; the surface plane is closely
parallel to (111); Mo Ka radiation, 220 (top) and 220 (bottom) stereo-
pair; width 22¢ = 720 pm; and 8§ ~ 0.25 um.

of two abrasion patches on a natural octahedron surface of diamond.? Natural percussion
damage gives rise to the extra specks. The second set of topographs (Figure 4) shows a
stereopair” of a silicon wedge onto which a strip of aluminum has been evaporated. The
thickness of the wedge varies roughly linearly from 0.15 mm at the left-hand side of the
figure to about 1.60 mm at the right-hand side. The thickness of the wedge may be
inferred from the Pendellgsung fringe pattern® which depicts contours of equal thickness.
The ““fading” of the pattern every fourteenth or fifteenth fringe is a diffraction effect
which has been described elsewhere.® Further diffraction contrast, e.g., the vertical
white lines!® and the specks due to accidental surface damage, are merely pointed out
here and will receive no further attention.

The nature of the diffraction contrast observed on transmission topographs depends
on the thickness of the specimen. For ut < 1 (u is the lincar absorption coefficient and
t is the thickness of the specimen), the contrast is always positive and insensitive to the
sign of the strains. The contrast seen in Figure 3 and on the very left of Figure 4 falls
into this category. Now it is well established that this type of contrast becomes zero when
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g - u (g is the reciprocal lattice vector) itself becomes zero, so that, with proper choice of
reflecting planes, indications of the direction (but not the sense) of u may be obtained.
A survey of this kind reveals that, in all diamond and silicon specimens studied, the
contrast reduces to zero at all positions on the peripheral boundaries of the bad layers
where g - n is zero and reaches its maximum where g - n is a maximum (see especially
Figure 3). This is in accord with the model, which predicts a state of very nearly plane
strain in the plane defined by n and x;, so that u is always very nearly perpendicular to
the periphery.

When pt > 1, the contrast may be either positive or negative, or both. This condition
is realized on the extreme right of Figure 4. Meieran and Blech! have empirically
established a rule for determining the sign of the strains, and thus of force F, from the
asymmetry of the diffraction contrast. Their rule may be stated as follows: The peripheral
contrast has net positive value where F - n and g - n have the same sign. From Figure 4,
we thereby deduce that F is directed outward from the strip edges, so that the bad layer
is in this case in a state of residual compression. (A similar deduction is made for the
diamond specimens.?)

INTERPRETATION OF CONTRAST MECHANISMS

Before we can make an estimate of the magnitude of the elastic strain field giving
rise to the observed diffraction contrast on the topographs, we must first understand the
contrast mechanisms themselves. In the previous section, we distinguished between
contrast at low absorption (commonly termed extinction contrast) and contrast at high
absorption (Borrmann contrast). A tentative inspection of Figure 4 would indicate that
the distinction between these two contrast regimes is not always too clear. The edges of
the strip for which g - n is positive give rise to a band of positive contrast invariant of
crystal thickness, while the opposite edges give rise to a band of similar width within
which the contrast changes progressively from positive to negative as the crystal becomes
thicker. The striking implication to be made from this observation is that the spatial
range of contrast is determined uniquely by the strain level and not at all by the absorption
level, absorption accounting only for the distribution of intensity within the bands of
contrast. Thus, if we can establish the strain situation at the extremities of the bands
where the contrast becomes zero, we have a means by which the entire strain field may
be specified, and this without having to place any restrictions on specimen thickness.

Unfortunately, the diffraction of X-rays in nearly perfect crystals is a very compli-
cated process when the beam incident on the crystal is widely angularly divergent.
The reason for this is that, in general, the diffracted intensity reaching each point on the
crystal exit surface is composed of the sum of contributions from rays contained within the
energy-flow-triangle delineated by the directions of the direct and diffracted beams.
The relatively large angle subtended by these two directions, together with the relatively
thick specimens used, generally precludes such practical simplifications as the “‘column”
approximation made in electron microscopy. But, in certain instances, such as at very
low and very high absorption, and with the strain mainly localized near the X-ray exit
surface of the crystal, at least a semiquantitative analysis of the contrast can be developed.
The treatment is further aided by considering only cases of symmetrical transmission so
that g is parallel (or antiparallel) to n.

Penning and Polder!! were the first to present a formal treatment of the behavior
of X-ray beams in slightly distorted crystals. A slightly distorted crystal is interpreted as
one in which the allowed wave field at each point can be completely specified by wave
points on the various branches of the dispersion surface construction in reciprocal space.
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Each wave point corresponds to a ray (energy-flow vector for a pair of incident and
diffracted waves) whose direction of propagation is normal to the dispersion surface at
that point. The Penning and Polder theory indicates that, in an undistorted crystal, the
wave points retain their location on the dispersion surface as the rays pass through the
crystal, while, in a slightly distorted crystal, they ‘‘migrate” along their respective
branches. The physical interpretation of the wave-point migration is that the rays
propagate along curved paths rather than in straight lines as they do in perfect crystals
and that there is an associated redistribution of the energy flow in the incident and
diffracted directions. The amount of migration of a given wave point as the ray propagates
an incremental distance is proportional to a deformation parameter » defined in terms of
the component of u parallel to g: for g parallel to x,, we have,11-12:13 with ¢ the Bragg
angle and with x, and x5 defining the plane of incidence,
9 g . Puy
n = cos? —— — sin? 0 —— ()
0x,2 0x,2

Reversing the sign of u, or g reverses the sign of %. The total migration of a ray when it
reaches the exit surface is then proportional to the integrated value of n over the ray path
between the entrance and exit surfaces. Theterms ¢2u,/¢x;2and ¢2u,/ ¢x,2 [computed from
equation (1)] are shown as functions of relative depth x3/w below the crystal surface in
Figure 5. It is noted that, in all cases, these terms reverse their sign just beneath the
crystal surface and that they attain their maximum value at the crystal surface.

We now investigate the application of the above concepts to the strain field at the
edges of the evaporated aluminum strip on the silicon substrate (Figure 4). At both high
and low absorption, it will be found that the observed contrast can only be explained in
terms of a breakdown of the Penning and Polder theory.

High-Absorption Case (ut > 1)

When the absorption is high, Borrmann transmission occurs; Z.e., rays which belong
to that branch of the dispersion surface with the longest wave vectors and which travel
closely parallel to the Bragg planes show anomalously high transmission, while all
remaining rays are rapidly attenuated. For the weakly absorbed rays, Penning and Polder
show that, when the deformation parameter 7 is positive, the wave points migrate along
the dispersion surface in such a way that the flow of encrgy into the diffracted beam
becomes increased (at the expense of the direct beam); similarly, for a negative parameter,
energy is transferred into the direct-beam direction. The integration of % is now performed
by making the assumption that the ray-propagation vector remains antiparallel to xg;
since the strongest distortion is at the X-ray exit surface, this assumption should not
lead to much error owing to spreading of the rays. When this is done, it is found that the
integrated value of 7 at the exit surface is zero for all values of x,. This is not altogether

-I‘OCI)O -750-590 -2]50 0 25_(|) —zrso 0 2?0 500 750

Figure 5. Plots of (a) ¢2u,/éxg? and (b)
0%uy[ &x52 (plotted on abscissas in units of
F|E7c?) as a function of relative depth xfze
(plotted down to the depth ay = 0.12 w);
labels on the curves denote particular
values of xgfze.
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surprising since we saw in Figure 5 that the terms in % reversed their signs below the
crystal surface. The physical interpretation of the zero integral is best seen with reference
to the first of the two terms in equation (2). The integration of this term over the thickness
of the specimen along x5 gives, for small 6, the difference in lattice tilt at the exit and
entrance surfaces. Both these tilts must be zero according to the mode! of Figure 2 in
which the surfaces are flat and stress free except at the peripheries of the bad layer.
Thus the Penning and Polder theory would predict zero contrast, which is, of course, in
direct contradiction with the observation in Figure 4.

The explanation of this apparent discrepancy lies in the fact that we have assumed
the lattice distortion to be small enough that the behavior of X-rays in the crystal may be
represented by a migration of wave points along the branches of the dispersion surface.
However, Penning?? shows that, when |7| locally exceeds some critical value ||, the
propagating ray can no longer adjust its curvature sufficiently rapidly to satisfy the
above dynamical description (see later). Bearing this in mind, we now investigate the
possible behavior of a ray approaching the exit surface in Figure 2. We find from
Figure 5 that, at the edge for which g is parallel to n, the integrated value of n will first
become increasingly positive, reaching a maximum value where the curves cross the
ordinate, and will subsequently decrease again toward zero. If || is exceeded before
reaching the exit surface, the ray can no longer be dynamically scattered and will pass
out of the crystal without further reflection. This will prevent the integrated » from
attaining its zero value, so that the net n will be effectively positive at the exit surface and
will thus give rise to extra intensity in the diffracted-beam direction. Similarly, with g
antiparallel to n, the sign of » becomes reversed, so that, for the opposite edge of the strip,
extra intensity will appear in the direct- rather than diffracted-beam direction. This
explains the asymmetric contrast on the right-hand side of Figure 4.

Low-Absorption Case (ut < 1)

The low-absorption case is complicated by the presence of rays from all points on
all branches (including those branches due to the polarization of the beam) of the
dispersion surface. However, the situation is simplified by the fact that the upper and
lower branches have an equal and opposite effect on the integrated intensity at the exit
surface. Therefore, we should again expect to observe zero contrast at the periphery of
the bad layer. But, when absorption is low, we must take cognizance of the divergent
incident beam. Only that portion of the beam falling within the angular range of reflection
of the perfect crystal is dynamically diffracted according to the dispersion-surface
representation, the remainder of the beam passing through the crystal almost unattenuated.
It is this latter part of the incident beam which can give rise to diffraction contrast.
Those regions of crystal for which |y| > ||, although not able to diffract the X-rays
dynamically, will be suitably oriented to diffract some part of the intense direct beam,
which gives rise to positive contrast at both edges of the strip on the left-hand side of
Figure 4.

ESTIMATE OF PARAMETER F

In the previous section, we saw that the diffraction contrast at high and low absorption
could be explained if we postulated that the lattice distortion near the periphery satisfied
the condition |y| > |7,|. (The argument can be extended to the case of intermediate
absorption.?) Penning!? interprets the breakdown of the dynamical scattering concept
in the following way. If the distortion of the crystal is too severe, there are insufficient
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reflecting planes to generate the necessary curvature of the ray path. Using an argument
of this kind, one obtains?

nel ~ 1/gt.? 3
with ¢, an extinction distance.

For the diffraction conditions used in Figure 4, § = 11°, so that the first term in
equation (2) is the dominant one. We may therefore approximate 7, to R,”1, where
R is the radius of curvature of the Bragg planes. Now, we saw in Figure 5 that this curva-
ture attained its maximum value R,~! at the X-ray exit surface. Thus, for diffraction
contrast to appear, the curvature |R,™1| should exceed the critical value |R, ™| compu-
ted from equation (3). In Figure 6, |R,~!| is plotted as a function of x, (the quantities E,
F, and w appear when the curvature is plotted in dimensionless form). From the position
of the contrast band at the aluminum strip edges marked on this diagram, we find

= 2.5 x 102

F
- — *)

Ew

(4
as the critical curvature relevant to Figure 4. Equating the right-hand sides of equations (3)
and (4) and inserting E = 13 x 10! dyne/cm? for silicon, 2w = 0.072 cm, g = 5.2 x
107 cm™1, and ¢, = 37 x 10~% cm for Mo Ka, 220 reflection in silicon, we arrive at a
value of 1 x 10* dyne/cm for F. This may be compared with the value F = 5 x 10°
dyne/cm obtained for the abrasions on the diamond surface in Figure 3.2

CONCLUSION

We have presented an elastic model from which the strains around damaged layers
of crystal surface may be calculated, and it has been shown that the single parameter F
characterizing the strain field can be determined from X-ray topographs by simply
observing the spatial range of diffraction contrast. It is, however, pointed out that several
approximations attend the treatment given above. For instance 8 is considered effectively
infinitesimally small so that we can introduce the concept of the line force F in the
surface. In the cases discussed above, the width of the contrast bands greatly exceeds 3,
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so that little error is introduced. We also considered 8 small so that 5, might be replaceable
by R.™1; for 8 larger, Figure 6 would require R~ to be replaced by 7, and this plot
would then only be valid for the one value of 8. It was further assumed that the curvature
of the rays through the distorted crystal was not severe; the small 8 and the localization
of the strain field at the exit surface permitted this assumption to be made. Finally, the
Penning criterion predicting the breakdown of dynamical scattering [equation (3)] is
not exact and is subject to some degree of uncertainty. Thus, in applying the above
treatment to the cvaluation of crystal surface strains, one must ensure that the various
assumptions are adcquately satisfied, and the deduced value of F must be regarded as
having order of magnitude accuracy only.
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