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A systematic study has been made of the dislocation arrays produced by indenting (001)
surfaces of LiF with steel and nylon spheres. The arrays are discussed in terms of position
along a curve relating “‘indentation stress” to “‘indentation strain’, these parameters being
determined by the geometry of the contact between indenter and specimen. Three stages
of behaviour are distinguished: (i) elastic stage, to which the classical Hertzian contact
theory is applicable; (ii) initial yield stage, to which standard yield criteria may be applied
to predict the spatial location and critical resolved shear stress for initiation of dislocation
motion; (iii) subsequent growth of plastic zone, in which the relative activity of the various
slip systems determine the indentation behaviour. A mechanism for the initiation of dis-
location flow below an indenting sphere has been proposed on theoretical grounds, and sub-
sequently supported by experimental evidence; this mechanism differs from alternative
proposals in that the dislocation sources operate within the interior of the crystal rather
than at the crystal surface. An evaluation of the dislocation activation stress for LiF is
thereby made, the value obtained being in reasonable agreement with results taken from
conventional compression tests. The indentation stress—strain behaviour is then discussed
in the light of current thought on indentation theory, and some shortcomings in present
ideas are pointed out.

Es wurde eine systematische Untersuchung von Versetzungsanordnungen durchgefiihrt,
die durch Eindriicken von Stahl- und Nylonkugeln auf (001)-Oberflichen von LiF hervor-
gerufen wurden. Die Anordnungen werden durch PositionsgroBen lings einer Kurve, die
die ,,Eindruckspannung‘‘ mit der ,,Eindruckdehnung‘‘ verkniipfen, diskutiert. Diese Para-
meter sind durch die Geometrie des Kontakts zwischen Stempel und Probe bestimmt. Drei
Verhaltenszustinde werden unterschieden: (1) elastischer Zustand, fur den die klassische
Hertzsche Theorie anwendbar ist; (2) AnfangsflieBzustand, fir den Standardkriterien des
FlieBens fir die Vorhersage der rdumlichen Lage und der aufgelosten, kritischen Scherspan-
nung fiir das Beginnen der Versetzungswanderung angewendet werden konnen; (3) nach-
folgendes Wachsen des plastischen Bereiches, in dem die relativen Aktivitdten der ver-
schiedenen Gleitsysteme das Eindruckverhalten bestimmen. Ein Mechanismus far den
Start des VersetzungsflieBens unterhalb einer Eindruckkugel wird auf theoretischer Grund-
lage vorgeschlagen und durch nachfolgende experimentelle Hinweise bestarkt; dieser Me-
chanismus unterscheidet sich von Alternativvorschligen dadurch, daB die Versetzungs-
quellen eher im Inneren des Kristalls als an der Kristalloberfliche wirken. Eine Abschit-
zung der Versetzungsaktivierungsspannung fir LiF wird durchgefiihrt, der erhaltene Wert
befindet sich in befriedigender Ubereinstimmung mit den aus konventionellen Kompressions-
versuchen erhaltenen Ergebnissen. Das Eindruck-Spannungs-Dehnungsverhalten wird
dann im Lichte der laufenden Vorstellungen iiber die Eindrucktheorie diskutiert und einige
Unzulinglichkeiten dieser Ideen werden aufgezeigt.

1. Introduction

The deformation processes involved in the conventional testing of the mecha-
nical properties of solids are usually investigated in terms of a stress-strain curve.
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By this means a considerable amount of information concerning the manner in
which a given material deforms over a wide range of stress conditions can be
systematically tabulated. There is one method of testing, however, in which
systematic studies of applied stress as a function of strain have not been exten-
sively made: this is the technique of loading specimens with an indenter of
suitably chosen geometry, e.g. a spherical or pointed indenter. Indentation tech-
niques are largely used in routine hardness testing, where the size of a remanent
impression left by the indenter may be quickly measured and the indentation
pressure thereby evaluated, this giving an index of specimen “‘hardness’”. It is
only in recent years that researchers have begun to study in some detail, parti-
cularly in metals, the deformation patterns surrounding such impressions, and
thus to reveal the nature of the physical processes which control the hardness
characteristics of a given material. As a result of this activity indentation tech-
niques are becoming more widespread as a valuable tool in their own right for
investigating the deformation properties of solids, and in this respect have a
number of advantages over the more conventional tests: among these advan-
tages are; simplicity of operation, involving relatively little demand on specimen
preparation; ability to perform many tests over a small surface area of a single
specimen ; possibility of obtaining a measure of physical parameters not obtain-
able in the more conventional tests; possibility, by virtue of the strongly in-
homogeneous nature of the stress field below an indenter, of revealing new types
of deformation behaviour.

It is because of this increasing activity in indentation testing that an attempt
is made here to characterise the plastic deformation processes that occur in LiF
single crystals in terms of ‘‘indentation stress” and ‘indentation strain”. For
this purpose it is found advantageous to concentrate on spherical rather than
pointed indenters for two reasons: firstly, from the standpoint of mathematical
tenability the stresses beneath a spherical indenter are more easily specified
[1, 2], if only over a restricted r1ange of deformation; secondly, the indentation
pressure beneath a spherical indenter can be varied over a wide range, this permit-
ting various phases of the deformation processes to be studied, whereas the inden-
tation pressure remains effectively constant for standard pointed indenters.
LiF is chosen as a test material because its plasticity properties have been widely
studied, and because it is amenable to studies by optical, etch, and X-ray topo-
graphic techniques. Further, while the indentation behaviour of plastically
isotropic solids is reasonably well understood [3], comparatively little is known
about the parallel behaviour in anisotropic solids; single crystals of LiF provide
a particularly good example of the latter class of solid, dislocation glide being
confined to a restricted number of crystallographic planes.

2. Indentation Stress-Strain Curve
2.1 Geometric similarity principle

The interpretation of indentation processes is often simplified by making use
of the principle of geometric similarity!), which effectively states that all geo-
metrically similar indents are formed at the same indentation pressure, inde-
pendent of the size of the indenter [3]. Fig. 1 illustrates the situation for two

1) Despite its widespread success, this principle is empirical, and must therefore be
applied with caution. It fails, for instance, to predict the initiation of Hertzian fractures
in brittle solids. in which case the critical indentation pressure depends systematically on
the size of the indenter [4].
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Yig. 1. Geometric similarity of two spherical indentations. r denotes
ball radius, @ the radius of the contact circle

"
spherical indenters: with the materials of the in- ‘ / \ —
denter and specimen remaining unchanged for 7.7/ AN S
each indentation, it is seen that the displace-

ment field scales with the chordal diameter of =2 =
contact for geometrically similar indentations. The 5
strain field beneath the two spheres must conse-

quently be identical. Thus, since the size inde- s ~
pendent ratio a/r determines the geometry of

the contact region between sphere and specimen o2 —

it also determines the strain level, so that a/r

may be regarded as a representative ‘‘indentation strain’. Similarly, since
the mean indentation pressure p, (indenter load/projected area of indentation)
determines the stress level in the specimen, we may regard p, as a measure of the
“indentation stress”. Accordingly, with the strains completely determining the
stresses, we have

n=1(%)- | M

This relation, which is independent of either the mode of deformation beneath
the indenter or the anisotropic properties of the specimen, may thereby be
regarded as the “indentation stress-strain’ characteristic for ball indentations.
1ts application to the study of fine-grained metals has been discused at length
by Tabor [3].

2.2 Indentation experiments on LiF single crystals

Specimens of LiF, typically 1 x 1 X 0.2 cm?®, were prepared by {100} cleav-
age from a large single crystal block (Harshaw crystal). A Kentron micro-
hardness testing machine was then used to make indentation tests on the spe-
cimens. An inverted microscope mounted on the crosshead of the testing
machine (Fig. 2) permitted the contact between the depressed indenter and the
specimen to be observed throughout the indentation procedure. The contact
appeared as a central dark spot surrounded by concentric interference rings. the
clarity of which depended largely on the nature of the indenter surface. For in-
stance, steel balls gave rise to distinct fringe patterns while nylon balls, with their
poorly reflecting surface, gave contacts that could barely be detected. By me-
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asuring the spacings of these rings the diameter of contact could be estimated
[5].

With the Kentron machine indenter loads within the range P = 1 g to 10 kg
were possible. Higher loads were obtainable by mounting the indenter into the
underside of the cross-head of an Instron testing machine, with the specimen
stage seated on a compression load cell. The load rate of the indenters onto the
specimen was always kept to a minimum, and contact maintained at the re-
quired load for at least one minute.

Indentation tests were thus made on (001) surfaces of LiF using steel balls of
diameter 1/,”", 1/,”, /;¢’’, and 1/;"". From the indenter load P, the contact dia-
meter 2a, and the ball radius 7, the mean pressure,

P

T

Po (2)
and the ratio a/r were readily calculable. The resulting stress-strain characteris-
tic (1) for steel spheres is plotted in Fig. 3. Points for the different size steel
balls fall onto the one universal curve, thus providing confirmatory evidence
for the validity of the geometric similarity principle.

2.3 Compression stress-strain curve of LiF

It will be found instructive in the following sections to compare the curve in
Fig. 3 with the stress-strain curve obtained in a standard uniaxial compression
test. Specimens of LiF, typically measuring 2 X 0.6 X 0.6 cm3, were cleaved
from the same original block as the specimens above. These were lightly etched
to remove superfluous surface damage, and were then oriented with their long,
[001] axis vertical between two horizontal plattens in an Instron machine. The
contact surfaces were lubricated with molybdenum disulphide, and the Instron
crosshead driven at 0.01 cm/min. From the load-displacement curve thus ob-
tained the ‘“‘true’ stress-strain curve?) was calculated, assuming the specimen
to be incompressible and end-effects to be negligible. A wide variation in be-
haviour was observed, attributable mainly to frictional end-effects which could
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Fig. 3. Indentation stress—strain curve for steel ball T'ig. 4. Compression stress—strain curve for Lil" crystals
indentations on (001) LikF cleavage surfaces. Broken loaded along [001)

linec represents calculated elastic behaviour. Ball

diameter: 1/,”, crosses; 1/,’’, triangles; 1/,s’’, circles;

1/5’', squares. Open symbols denote XKentron data,
closed symbols denote Instron data

2) The “true stress” and “‘true strain” being defined in terms of the cross-sectional area
at a given instant rather than in terms of the original cross-sectional area.
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not be completely climinated, but Fig. 4 represents an average result obtained
for a uniformly compressed specimen. This type of stress-strain curve has been
well studied [6, 7, 8], and is generally classified in terms of the following stages
of deformation: a) elastic region OY; b) initial yield region YE, in which a
restricted amount of dislocation motion begins on favourably oriented {110}
glide planes; c) easy glide region EG, in which glide becomes predominantly
active on one set of glide planes only; d) work hardening region GF, in which
interactions between the various operative glide systems occur until the spe-
cimen fractures.

3. Analysis of Dislocation Arrays on Indented LiF Surfaces

The optical arrangement outlined in Section 2.2 provides a measure of the
mutual contact area in an indentation test, but reveals nothing about the dis-
location mechanisms by which the specimen deforms. For this latter purpose
indentations were examined using mainly etch techniques, with X-ray topo-
graphy providing useful complementary information. Other standardised opti-
cal techniques, two-beam interferometry and stress birefringence, are especially
suited to the study of the more severe indentations [9].

With large indentation pressures (say within the range AF of Fig. 3) the de-
formation around the impressions was gross, resembling the familiar “rosette’
patterns on LiF [6]. With small indentation pressures (range OA of Fig. 3) the
deformation was less complex but, at the same time, more sensitive to the state
of the surfaces of both the indenter and specimen. For instance, the hard asperi-
ties on even the most carefully polished steel balls gave rise to a profusion of
minor rosettes over the entire area of contact with the specimen. At very low
loads this spurious damage precluded the observation of the dislocation arrays
created by the genuine Hertzian stresses. Consequently, nylon spheres, with
their relatively soft surface irregularities, proved more useful for studying the
initial stages of the deformation.

Using the classification scheme for the various deformation stages in the
uniaxial compression test as a guide (cf. Section 2.3), an attempt was made to
similarly classify the dislocation pattern at spherical indentations in terms of
various stages of indentation stress and strain. Despite the apparent resemblance
between the curves in Figs. 3 and 4 significant differences were observed in the
deformation behaviour, as a result of which it becomes more convenient to dis-
cuss the spherical indentation behaviour under the following headings: a) elastic
region QY ; b) initial dislocation motion at the “‘yield”” point Y; c) plastic zone
growth YABF. We discuss each of these stages in turn.

3.1 Elastic stage

Within the elastic range OY of Fig. 3 we may apply the classical Hertzian
contact theory [1]. The actual stresses beneath a spherical indenter were not
computed by Hertz in detail, but are calculable from equations derived by
Huber [10]. The radius of the circle of contact between indenting sphere and flat
specimen is given by

K

3
a—zGPr, (3)

59 physica 35/2
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where K is a dimensionless constant expressible in terms of the shear moduli G.
G’, and Poisson’s ratios v, ¥ of specimen and indenter materials respectively:

k=Sa-n+a-»ngt )

By eliminating P from (2) and (3) we may write the indentation pressure as

Po = (i—i) =. (5)

Equation (5) thus provides a rigorous theoretical justification for the functional
form of the indentation stress-strain characteristic (1) within the elastic range.

The curve corresponding to (5) has been calculated by inserting @ = 3.7 x 10!
dyn/em? (LiF), @ = 7.5 x 10! dyn/em? (steel), » =+ = 1/; (giving K =~ 3/,),
and is plotted in Fig. 3 as the broken line. The experimental data appear to
approach this line at low indentation pressures. It was difficult to confirm (5)
any more accurately than this, because plastic flow occurred under steel inden-
ters at even the lowest loads attainable, and in the case of nylon spheres, where
elastic impressions were readily obtainable, the area of contact could not be meas-
ured sufficiently accurately (cf. Section 2.2).

3.2 Initial dislocation motion

i

s A £ 4 S This stage of deformation, correspon-
) Q ding to the point Y on Fig. 3, is the most
0003 amenable to a quantitative study. For
040 the Hertzian analysis outlined above
0 pp  remains valid up to the point just prior to
the onset of irreversible deformation, and
020 may thus be applied to determine both the
critical indentation yield pressure and the
a spatial location of initial dislocation mo-
‘ tion within the inhomogeneous stress

s 3 = 5 field.
@ Q We now invoke standard plasticity cri-
005 teria to the Hertzian stress field at the
040 initial yield point. For a plastically iso-
4 V] tropic solid we might thus expect the
onset of flow to occur at that point within
070 on the indented specimen which maximises
b the greatest principal shear stress (Tresca

criterion). A contour plot of the grea-

0 S Fig. 5. Contours of shear stresses in a plane containing the
005 axis of contact between sphere and flat specimen. (a) is for

isotropic solid, (b) and (¢) for crystal with (001) surface.

AA represents diameter of contact, 85 portion of the (in-

finite) surface. p, is the unit of stress. (a) Greatest prin-

cipal shear stresses, contained in plane of symmetry; (b)

shear stresses resolved on {110}, glide planes in direction

of Burgers vector; plane of diagram either (010) or (100):

(c¢) shear stresses resolved on {110}, glide planecs in di-

0 rection of Burgers vector; plane of diagram either (110)
or (110)
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test principal shear stresses under a spherical indenter (Fig. 5a) shows a
maximum value of 0.46 p, at a position located about 0.5 @ below the surface
along the axis of contact. (The case of flow initiation in isotropic materials under
spherical indenters has been discussed in detail by Davies [11].) For a single
crystal we have, in analogy with the Tresca criterion, the so-called critical resolv-
ed shear stress criterion, which requires maximisation of the shear stresses resolv-
ed along favourable glide planes in the slip direction. The shear stresses appro-
priately resolved for the {110},; and {110}, glide planes?) are respectively shown
in the contour maps of Figs. 5b and 5c: in these two plots the plane of the dia-
gram contains both the axis of contact and the Burgers vector of the dislocations
corresponding to the appropriate glide system. We see that the location and
magnitude of the maximum resolved shear stress for the {110},; system is as for
the isotropic case, while for the {110}, system the maximum shear stress has a
value 0.33 p, approximately 0.5 a directly below the circle of contact. The shear
stresses do not attain high values at the crystal surface (the maximum possible
shear stress attainable at the surface is calculated to be 0.16 p,). Thus on the
basis of the critical resolved shear stress criterion one would favour dislocation
initiation to occur on {110},; planes at a point about 0.5 a below the centre of
contact; however, the maxima in Fig. 5 are by no means sharp, so that a reason-
able variation in behaviour might well be anticipated.

Following the comprehensive studies by Gilman and Johnston [12] on dislo-
cation mechanisms in LiF one is led to postulate that the dislocations nucleate
heterogeneously in the form of loops and, on further increasing the indentation
pressure beyond the yield point, that these loops subsequently expand outward
from their sources to eventually intersect the crystal surface. The two essential
features of this model (depicted schematically in Fig. 6), namely (i) that dislo-
cation sources operate initially on {110}, planes, and (ii) that these sources are
internal ones, are supported by an examination of indented LiF surfaces.

Fig. 7 shows a surface indented with a 1/,”” nylon sphere and subsequently
etched with the etchant ““A” of Gilman and Johnston [6]. (In this and in all
following micrographs the indented surface is designated as (001), and the edges
of the diagram are along cube directions.) In order to distinguish between those
dislocations grown-in and those freshly created during indentation the specimens
were given a 30 s etch both before and after indentation: thus the grown-in dis-
locations, which remain immobile during indentation, are recognisable by their
larger pit size. The orientation of the dislocation arrays in Fig. 7 is consistent

ooy
/t_./p]g/
7 ! ]
| N
Fig. 6. Schematic representation of dislocation source P P ==
operating at position of maximum resolved shear stress on P b
a single {110} glide plane within the Hertzian stress field. Ve
& denotes source, b, the direction of Burgers vector. (100) //
section shown intersecting S

3) In crystals with the rocksalt structure dislocation glide occurs either on {110} planes
inclined at 45° to (001) (termed the {110},; planes) or inclined at 90° to (001) (termed the
{110}y, planes). The Burgers vectors lie along ¢(110).

59*
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Fig. 7. Indentations made with !/, nylon ball on a (001) cleavage surface of Lil. Specimen etched before and after
indentation. Indenter loads (a) 100, (b) 200 g. Width of field 500 p.m

with slip on the {110},; planes, thus supporting the first of the two above features.
At the lower loads one of the four possible sets of slip planes was usually found
to be dominant, but as the load was increased the arrays tended to become more
symmetrically disposed. No evidence of plastic flow could be determined for

indenter loads much below 50 g. Transmission X-ray topographs [13] of simil-
arly indented crystals (e.g. Fig. 8) confirm that 50 g represents an upper limit
to the critical yield load for 1/,” nylon spheres.

The second essential feature of the dislocation model requires knowledge of
the geometry of the dislocation arrays beneath the indented surface. This was

Fig. 8. Lang topograph of indented (001) cleavage surface of LiF. Radiation AgKa,
020 reflection. Arrow, length 1 mm, denotes diffraction vector. Left-hand column
made with nylon ball, loads (top to bottom) 400, 300, 200, 100 g; right-hand
column made with /,¢" steel ball, loads 25, 50, 100, 300 g
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obtained by cleaving through the arrays, and then re-etching the crystal to
reveal their intersection with the new cleavage plane (Fig. 9). The diagonal
traces on the section planes in these figures clearly match the vertical traces of
the (011) and (011) slip planes on the indented surface, while the horizontal traces
likewise match the horizontal traces of the (101) and (101) slip planes on the
indented surface. The postulated depth, 0.5 a, of the dislocation initiation point
below the (001) surface is obtained by inserting P, = 50 g (critical load),
r = 0.625 cm, G = 0.1 x 101! dyn/em? (manufacturer’s specification for nylon,
giving K =~ 20) into equation (3): the calculated depth of approximately 50 um
corresponds very closely to the points of mutual intersection of the traces of the
(011) and (011) slip planes in the sectional view of Fig. 9. It is noted that the dis-
location density generally tends to be greatest in this vicinity, as one would expect
if sources were to operate there. The most conclusive evidence supporting the
internal source postulate is obtained by comparing etch pit counts for the corres-
ponding slip traces on the (001) and (100) surfaces. If surface sources were to be
active each half-loop would intersect the (001) indentation surface at two points,
and a subsequent favourably directed (100) cleavage plane (i.e. a plane inter-
secting all half-loops) at one point. It follows that, at best, the etch pit count for
a particular slip trace on the (100) surface could equal half that for the matching
trace on the (001) surface. For internal sources, on the other hand, similar con-
siderations show that for a favourable (100) cleavage plane the corresponding
factor could greatly exceed one half (e.g. in the hypothetical case in Fig. 6 the
factor would be 11/6). Careful counts have revealed a number of cases in which
the etch pit count factor exceeded one half?) (the (011) slip trace on the extreme
right of the array in Fig. 9 providing a notable example). Thus the evidence
points to the internal dislocation source as the agent for flow initiation on the
{110},5 planes in LiF, a mechanism which, in the absence of a detailed considera-
tion of the Hertzian stress field, has not been specifically considered by other
workers [6, 14, 15].

Having provided evidence to support the modelin Fig. 6 we may now proceed
to compute the critical stresses from the Hertzian theory. From Fig. 5b the
critical resolved shear stress is

Toy = 0.46 poy, (6)

where pgy is the mean indentation pressure at the initiation point Y in Fig. 3.
If 0gy is the corresponding compression stress at which dislocation motion begins
in the compression test, then for crystals aligned along [001] the critical resolved
shear stress on {110},; planes is

Toy = 0‘01’/2 . (7)
Combining (6) and (7) we have

Poy = 0oy - (8)
Inserting into (5) the data for the nylon spheres for critical loading we obtain
Poy =~ 2 kg/mm?2 This compares with ooy = 0.8 kg/mm? corresponding to
point Y in Fig. 4. Remembering that the quoted critical load in the indentation

tests represents an upper limit, and bearing in mind that the non-ideal conditions
existing in most compression specimens will act to reduce g4y, these approximate

1) Of course, a factor of less than one half tells us nothing about the location of the source.
this simply indicating that the sectioning cleavage has not intersected all the loops.
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caleulations indicate the ability of the ball indentation test to provide at least
an upper limit to the initial yield stress of a plastic solid.

3.3 Growth of plastic zone to fracture
As the load on a spherical indenter is raised beyond the yield point the plastic
zone grows in size. The theory of plasticity in its present state is unable to pro-
vide a formal solution of any problem where the clastic and plastic strains in
crystals are comparable. We are therefore restricted to qualitative descriptions
of the dislocation arrays as a function of increasing indentation pressure. Other

Fig. 9. (001) half-surface (top) and cleaved (100) cross-section (bottom) views of

indent made on LiF with '/,” nylon ball under 350 g load. Surface view shown after

cleavage through indent. Width of ficld 500 wm. (The curved line of etch pits in the
lower figure is a grain boundary)
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Soe

”

Fig. 10. Indentations made on (001) LiF surfaces with steel balls of 1/,” dia-

meter at loads (a) 50, (b) 200 g. Surfaces etched before and after indenta-

tion. Width of field 500 pm. (a) corresponds to p, 11 kg/mm®. (b) to
Po = 16 Kg/mm?. The diagonal traces represent {100}, <lip
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g

ig. 11. Iracture pattern associated with an indentation on (001) Lil* made with 1/,4"" steel ball at aload of 70 kg.
Fracture viewed in transmitted light. Width of field 0.30 cm

workers have described similar patterns, -but only for arbitrarily selected inden-
tation loads |6, 9, 14 to 19].

Fig. 10 shows indentation patterns produced by 1!/," steel spheres at loads
of 50 and 200 g. In Fig. 10a, corresponding to a point just above Y, it is evident
that the {110}, system has become active. This we might have anticipated.
since we saw in Section 3.2 that the shear stresses resolved for {110 }49 slip are not
very much smaller than those resolved for {110},; slip. Once the initial slip has
occurred on the {110}, planes the Hertzian analysis no longer remains valid. so
that there is no means for making a (uantitative estimate of the initiation point
for {110}y, slip. As the indentation pressure is raised toward point A on the
stress-strain curve the activity of the {110}, system begins to increase at a grea-
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ter rate than that of the {110},5; system. In Fig. 10b, where the density of
slip traces has increased but is still sparse, both systems appear to have a com-
parable activity, while at even higher loads, within the ‘“‘plateau’ region AB of
Fig. 3, where the slip traces completely surround the impression, the {110}y,
“arms’’ of the dislocation array extend rapidly outward at the expense of the
others. Thereafter, within the range BF of the stress-strain curve, the pattern
remains much the same in its geometrical shape, although it grows rapidly in
size, and takes on the appearance of rosettes obtained with pointed indenters.
Ultimately, at F, the specimens tend to fracture (Fig. 11).-

The slip behaviour described above differs significantly from that shown by
uniaxially compressed specimens. For while the {110},, slip system plays an
important role in the indentation tests this same system remains essentially
passive throughout a compression test. Thus the indentation behaviour appears
to be characterised by the gradually increasing assertion of the {110}y, slip
system over the competing {110},; system, while the compression behaviour
appears to be determined rather by changes in the relative activity of the four
planes within the {110},5 system only. Also, the pressure in a ball indentation
test needs to be increased by a factor of about 85 from that at yield to attain the
“plateau’ of the stress-strain curve (Fig. 3), while in the compression test the
corresponding factor is only 1.5 (Fig. 4). Thus the indentation curve deviates
comparatively slowly from elastic behaviour, this being attributable to the
constraining effect of the surrounding, elastically distorted, crystal matrix on
the expanding plastic zone localised just below the indenting sphere. Once the
plastic zone completely surrounds the indenter contact area this constraining
effect would appear to become minimised and a state of “full plasticity’ is
thereby achieved. The inevitable mutual interaction between slip on different
planes as the deformation becomes more intense presumably accounts for the
“work-hardening” region of the indentation stress-strain curve and for the com-
plex fracture pattern that follows [17].

4. Conclusion

It was pointed out in the introduction that indentation testing is widely used
as a means for indicating the hardness characteristics of a solid. The so-called
hardness number H (indenter load/actual area of impression) is of practical use
as an indicator of material hardness; for isotropic materials the hardness number
is relatable to the yield stress gy in a simple compression test3) by means of the
Tabor relation [3],

H~p,=coy, 9)

¢ being a constant whose value is about 3. Equation (9) is largely empirical, but
has received some theoretical justification for indentations in ideally rigid-
plastic isotropic solids. Apart from the advantage of simplicity in measurement
the Tabor relation has, indeed, been suggested as the only practical means of
evaluating yield stresses for those harder solids which behave in a completely
brittle manner in compression and other conventional testing arrangements.
With a suitable choice of indenter geometry the fracture tendencies of a speci-

5) oy in this case representing the stress at which deviation from the linear elastic portion
of the compression stress-strain curve first occurs.
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men can hopefully be suppressed by the largely hydrostatic compressive stres-
ses around the indenter, thus permitting a permanent impression to be made and
a yield stress o to be evaluated [20]. This procedure relies on two factors; firstly
that the impression is indeed a result of plastic flow, and secondly, that the con-
stant ¢ in (9) is specifiable and remains invariant for any experiment.

1t must be emphasised that Tabor’s relation is based upon the assumption of
isotropic plasticity. Here we are concerned with single crystals, whose plastic
behaviour is highly anisotropic. In this case we have no basis for pre-deter-
mining the factor ¢, which will become strongly dependent upon the orientation
of the crystal with respect to the loading axis. For instance, in our experiments
we have loaded LiF crystals along [001], for which we find ¢ = 50 to 60 (compare
po and ¢ within the fully plastic region of Figs. 3 and 4). Westbrook [21] has
made a similar observation for diamond pyramid indentations in numerous
crystals with the rocksalt structure. Now if the crystals were aligned along [111]
there would be zero component of shear stress on any of the {110} (110> slip
systems in an ideal uniaxial compression test, while for a spherical indenter the
inhomogeneous nature of the Hertzian stress field would ensure a finite compo-
nent of shear stress on all glide planes: thus for this particular orientation yield
would occur only in the indentation experiment and ¢ would effectively be
zero. Thus we expect ¢ to vary over a wide range of values, particularly for LiF
and the other rocksalt crystals which possess restricted glide systems. In metals
the slip systems are more flexible [20] and less variation in ¢ would be antici-
pated: in static ball tests on single crystals of lead, for instance, ¢ varies only
between 2.3 and 5 over a wide range of surface orientation [22]. Thus the Tabor
relation can not be regarded as a reliable guide to the yield strength of single
crystal specimens, despite its increasingly widespread use in the literature as
such.

One might therefore, in an attempt to establish the concept of hardness on
a firmer physical basis, alternatively advocate the use of the ball indentation
yield pressure p,y as a measure of specimen hardness; the approach would have
the advantage of relating the hardness of a material directly to a characteristic
property of its deformation behaviour, namely (in the present case) the stress
required to activate dislocation sources. This approach was actually proposed
by Hertz [2] as long ago as 1882, but there has been little attempt to develop
the idea since that time. There is, of course, the severe disadvantage in that
comparatively sophisticated experimentation is required to establish the condi-
tions of initial flow, as is evident from the present study on LiF, which makes the
Hertzian concept of hardness impracticable as a means for routine hardness
measurement. Nevertheless, it is evident that by developing techniques for detec-
ting the onset of irreversible deformation within the Hertzian stress field the
physical processes contributing to the general mechanical behaviour of a solid.
and the variables affecting these processes, may be studied in a controlled and
quantitative manner.
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