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ABSTRACT

A general method for simulating on a computer the growth of the cone-shaped fracture that forms under Hertzian
contact loading is outlined. The program involves an incrementing procedure in which both contact circle and cone
crack are grown in piecewise manner, according to suitable rate equations. The contact circle expands at a rate deter-
mined by the mode of indenter loading, and thereby sets up a time-varying stress field. Appropriate fracture-mechanics
criteria are then invoked to calculate the response of the growing crack to the contact stresses. Effects of loading mode,
specimen environment and temperature, size and location of the initial flaw from which the cone crack nucleates, are
inzestigated systematically. The computer predictions compare favourably with available experimental data. The
results are discussed in the light of previous theoretical treatments of the Hertzian fracture problem, and some new
features in the crack-growth characteristics are pointed out. Calculations are made specifically for normal contact
loading on glass, but ready extension of the program to other loading situations and materials is envisaged.

1. Introduction

The response of highly brittle solids to the type of stress field induced by forcing two curved
surfaces into mutual contact has many theoretical and practical implications. Under critical
conditions the response is readily apparent as the sudden appearance of a small crack in one
of the solids. The conditions for crack growth depend on the state of the near-surface material,
the presence of microcracks (which act as nucleation centres for the macroscopic cracks),
residual stresses, and the chemical environment. The size and location of the induced fracture
are determined by the geometry of the elastic contact. Of the various possible contact configura-
tions the most convenient is that of a hard sphere (indenter)loaded onto a flat surface (specimen),
in which case the induced crack takes the form of a truncated cone. This arrangement forms the
basis for the so-called Hertzian fracture test, now developing as a micro-mechanical probe for
measuring the strength properties of strong solids.

The analysis of the growth of the Hertzian fractures must take into account the highly
inhomogeneous (but well-defined) stress field beneath the indenter [1, 2]. In recent years a
theory of Hertzian fracture, using the approach of “fracture mechanics” to determine crack-
growth energetics, has been developed by Lawn and co-workers [3-5]. This theory accounts
for many features of the Hertzian test, yet it remains incomplete because of the restrictions
imposed by certain assumptions. For instance, the treatment computes the mechanics of
crack growth for the case in which the contact geometry remains invariant throughout an
experiment. In most test arrangements the indenter load increases monotonically, so that the
growing crack experiences a time-varying stress field. Again, for the important case where a
chemical environment reacts with stressed bonds at the tip of the growing cone crack, it is
necessary to introduce kinetic terms into the theory. The incorporatien of such terms is con-
sidered analytically intractable at present, and to date only a qualitative description of en-
vironmental effects in the Hertzian test has been attempted [6]. In addition, the original
theory makes assumptions concerning the location of the cone crack relative to the circle of
contact, and the value of the elastic constants of the indented material. Consideration of these
points has led to important modifications of the original theoretical predictions [7, 8].

In this paper an attempt is made to obtain a more realistic analysis of Hertzian fracture
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growth by avoiding as far as possible all restrictive assumptions. The added complication in
mathematical manipulation is handled by simulating the crack growth on a computer. As with
all exercises in computer simulation, our model approaches reality at the expense of physical
insight and generality. We are, for example, confined to the examination of a particularly
well-studied system, that of crack growth in soda-lime glass in the presence of water. While the
computer model provides a basis for testing the validity of a specified crack-extension criterion
for such a system, it cannot be used to deduce the form of any such criterion from experimental
data. Nevertheless, the model serves to indicate the effects of several important fracture param-
eters, e.g. indenter load rate, test temperature, surface flaw size, elastic constants, environment-
crack interaction constants, etc. The study of these effects confirms many of the conclusions
of the previous theory, and reveals several new features in the crack growth not previously
appreciated.

2. Background theory
2.1. Hertzian elastic contact

We consider the elastic contact between an indenter of radius r, Young’s modulus, E’, Poisson’s
ratio, v/, and an isotropic elastic half-space of elastic constants, E, v, as indicated in Fig. 1. The
radius, a, of the mutual contact circle is related to the applied force, P by

a® =4%(kPr/E), (1)
where k is a dimensionless constant,

k=15[(1-v?)+(1—v?)E/ET]. 2)
The distance of mutual approach of the contacting bodies is given by

Z = (4k/3E)*(P?/r)* . (3)

The above three contact equations are sufficient to specify the loading characteristics for
any commonly used indenter loading mode. Although it is usual to monitor P rather than a
during an experiment, the latter term is more useful as a characteristic parameter for investi-
gating time-variation effects. This, as we shall show later (section 3), arises because a ready
comparison between rates of change of contact radius and crack length affords a useful indi-
cation of the relative importance of load-rate and environment-interaction effects.
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Figure 1. Trajectories of the minimum (most compressive) principal stress under Hertzian contact loading. Calculated
for v=0.31.

We consequently list contact velocities @ =da/dt for four modes of indenter loading below :

(i) Constant load rate (P=dP/dt=const.). This mode may be produced by moving a dead
weight at constant speed along a cantilever loading arm [9]. Differentiation of (1) with respect
to time t gives

a(a, P) = (4kr/9E)(P/a?). ) ' 4)
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(ii) Constant crosshead speed (Z=dZ/dt=const.). Most standard testing machines
operate in this mode. Assuming the machine to be rigid, the crosshead speed is equivalent to Z,
and we obtain from (1) and (3)

ala, Z)=rZ/)2a. ®)

(iii) Static load. The indenter is loaded “instantaneously” to some preselected load and
then maintained constant:

a—o0 (—otst<0)
a=0 (O<t<ty),

with 8t < t, tp being the duration of loading.
(iv) Free-fall impact. For the case where a ball is released under gravity onto a specimen
from a height h we have [5]

a(a, h) = (r* gh/2a® — 3Ea*/20mkpr?) (7)

with g =9.80 ms~2, the gravitational acceleration, and p the density of the ball (we neglect air
resistance).

Figure 2 shows the manner in which a varies with a for three modes, the loading parameters
being specifically chosen to emphasise the wide range of contact velocities experienced in
typical tests. It is pointed out that the contact velocity approaches infinity at initial loading
(a=0) in all modes above.
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Figure 2. Plots of contact velocity a (a) for three specific loading modes. Calculations for tungsten carbide sphere,
r=6.35 mm, on glass, E=7.0 x 10'° Nm~2, k=0.55.

The mechanics of crack growth are determined by the distribution of stresses beneath the
indenter. Expressions for the stress components; from a solution by Huber [2], are summarised
in the Appendix. The nature of the Hertzian stress field, with particular reference to the fracture
behaviour, has been discussed in depth elsewhere [3, 4, 10] and we point out only the essential
features here:

({) Within a drop-shaped zone beneath the contact circle all principal stresses are compressive.

(i) The tensile stress reaches its maximum at the contact circle, and falls off relatively slowly
with increasing radial distance from the contact centre along the specimen surface.

(i) The tensile stresses decrease rapidly with depth below the specimen surface, the stress
gradient being steepest close to the contact circle. This is shown in Fig. 3, in which is plotted the
variation of the stress component normal to the plane x=500 um with depth z, for several
values of the contact radius a.
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(iv) The trajectories of the minimum (most compressive) principal stresses start orthogonal
to the specimen surface and rapidly deviate outward from the contact circle to form a family
of near-parallel curves (Fig. 1) closely resembling the shape of the cone cracks [3]. The stresses
normal to these trajectories then represent the greatest of the principal stresses. This compo-
nent of stress always remains tensile, but shows a tendency to steep gradients not unlike that in
Fig. 3 [10].

Stress O, (10' Nm-?)
-0-05 -004 -003 -002 -0-O o o-Q 0 02 003 O 04 O 05
v T T T T s

6 35mm radus tungsten
carbide ball en glass

Xe * S0Oum
Lobes Indcate a(um)

50

v m

Flaw depth z{pm}

300
250

Figure 3. Plots of normal stress o, (z) along perpendicular surface flaws. Calculated for x, =500 um for several values
of contact radius a (labelled).

2.2. Mechanics of crack growth

The surface of a brittle solid generally contains a wide distribution of microcrack sizes. Since
cone cracks initiate at such microcracks, tests on as-received surfaces may not be highly
reproducible. It is, however, possible to greatly improve reproducibility by uniformly abrading
the specimen surface [ 5]. This action introduces a high density of surface microcracks, whose
maximum depth may subsequently be measured to an accuracy of about one micron. When a
sphere is loaded onto an abraded surface, a critical stage will be reached at which one of the
microcracks will suddenly extend and develop into a full cone crack. The critical load required
to initiate this visible event may be taken to quantify the fracture behaviour.

g
/

z
Figure 4. Hertzian fracture parameters.
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The basis for a theoretical model of the crack growth behaviour may be outlined with
reference to Fig. 4. We consider the growth history of a crack, length c, initiating from a per-
pendicular flaw, length ¢, located at (x, 0) in the specimen surface. The object of the fracture
model is to quantitatively describe in detail the growth behaviour, taking into particular
account the conditions of indenter loading and the effects of any chemical environment. We
then seek the value of x, which optimises the critical conditions.

Int. Journ. of Fracture, 10 (1974) 1-16



A computer simulation study of Hertzian cone crack growth 5

In setting up a criterion to determine the conditions of crack extension we use the fracture-
mechanics approach previously described [3], approximating the fracture behaviour as fol-
lows:

({) The flaw first propagates around the circle of contact, and subsequently grows downward
into the material as a surface “ring” [3, 4, 11].

(i) The downward-propagating surface crack is approximated by a plane edge crack. This
representation is valid only for ¢ < g, i.e. in the region where crack curvature may be neglected.
(The inability to take into account the effects of crack curvature provides the main obstacle to
an exact description of the fracture mechanics.)

(iii) The crack path at any instant follows the direction of the principal stress trajectory
(Fig. 1) passing through the crack tip [3]. (In the general case of a time-varying stress field the
stress trajectory pattern will not remain constant, so that a growing crack will inevitably
experience a small component of shear across its interface. However, the shear components
will usually be small, and we consider only the effects of tensile stress on crack growth.)

With these points in mind we define the stress intensity factor

_ s (< o(b)db
K =20 | s ®)
and the associated crack extension force

G =(1-v})K?E, ©)

with b the distance along the crack, and o (b) the normal stress distribution as determined from
the Appendix. Both K and G refer to unit width of crack front.

In the absence of environmental effects the condition for crack extension may be suitably
expressed in terms of the Griffith equilibrium equation [13]

G=2y, (10)

where 7 is the energy of unit area of new fracture surface. However, at temperatures above
absolute zero, thermal activation processes may disturb the equilibrium at the crack tip, and
the fracture criterion may require to be expressed in terms of rate-dependent equations. We
then seek a kinetic equation for the rate of crack growth ¢=v (G, or K), in which the fracture
mechanics parameters determine the crack velocity. While the essential form of the crack veloci-
ty equations may be deduced from rate theory, theoretical understanding of the mechanisms
at the crack tip is incomplete, with the result that the parameters in the equations need to be
determined empirically for a given system.

The system glass-water has recently been studied over a wide range of values of K and G
[14-16]. In these studies several regions of growth behaviour are distinguished:

(i) Terminal velocity. At crack velocities approaching near-sonic values, the inertia of the
crack walls limits the extension [16]:

vy~ 1500 ms ! (11)
This region corresponds to large G, K values (G >2y), depicted as region I in Fig. 5.

(i1) Thermally-activated bond rupture. Beyond the Griffith equilibrium point and below the
terminal velocity region, the crack velocity is, in the absence of a chemical environment,
determined by the rate at which thermally-activated bond breaking exceed$ bond remaking.
Except near to the equilibrium, bond-breaking dominates, and the velocity equation [14]
(with R the gas constant, T the temperature)

—2.58x 103 +0.34K>
RT

applies (region II in Fig. 5), all units being in S.I.

oy =2.0x10"3exp ( (12)
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Figure 5. Plots of crack velocity ¢ (K) in glass. Curve I-II corresponds to vacuum conditions, curve I-11-1II to water
(I) environment.

(éii) Reaction-controlled velocity. In addition to the above effects, any chemical environ-
ment may react with bonds at the crack tip to enhance growth. This process may again be re-
presented by a thermal activation equation [14];

(—1.088x 10°+0.11 K
P X

Ul“ = 2.269 X 104 €X RT

(13)

(region III in Fig. 5).
The full curve shown in Fig. 5, which fits the data in refs. 14-16 reasonably closely, is arti-
ficially generated from the composite relationship

_bu (o + vyy)

. (14)
Uyt vy + Uy

In some systems, in particular when the environment consists of a dilute gas, a further (diffusion
limited) region, may be identified between regions II and III[ 14, 15].

3. The computer model

In the previous section we used the time derivatives of the linear dimensions a and c to re-
spectively characterise the rates of loading and crack growth. Comparison of ¢ and ¢ then
affords a convenient and simple means for assessing the rate-controlling factor in a given
Hertzian test: for example, while a > ¢, the load rate may be considered too rapid to allow
significant environmental effects to manifest themselves. Some idea of the conditions under
which either one or other of the two terms @ or ¢ dominates may be inferred by comparing
Figs. 2 and 5.

Considerations of this type are of prime importance when setting up an incrementing proce-
dure to simulate cone crack formation. The logical sequence of steps in our calculation is out-
lined in the flow chart of Fig. 6. We begin with zero contact and follow the subsequent growth
of a surface ring as the indenter is loaded. A suitable choice of increment size is made for both
contact and crack, bearing in mind the conflicting demands of accuracy and machine-time cost.
We adopt the procedure of using x (Fig. 4) as a characteristic length, and impose a maximum
number of steps, N, for either a or ¢ to reach this length ; N is then adjusted by trial. It is prefera-
ble to include some device for allowing the Aa increments to become progressively smaller
as the contact circle approaches x,, and the Ac increments to become likewise larger, since the
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dus, ¢e0

Figure 6. Computer flow chart.

most interesting regions of crack growth are found to occur for a—x,, c < x..
Thus in the first cycle of the incrementing loop we assign tentative values to Aa, Ac, and test
for rate control as follows. We compute the corresponding time intervals

At, = Aa/a(a), At,= Ac/é(c), (15)

and select the smaller as our time increment. This then necessitates a revaluation of either
Aa or Ac, according to whether At, is greater or lesser than At.. Initially, when d > ¢, the contact
velocity determines the incrementing step size, whereas as the contact circle expands toward
x. and causes the crack to accelerate, the crack velocity becomes the controlling factor. This
scheme has two major advantages: (i) it safeguards against excessive increment sizes (as, for
example, could occur at large ¢ if we were to fix Aa, compute At=Aa/d, and then determine
the crack increment according to Ac=¢At); (i) it provides a convenient output in which the
interesting regions of rapid crack growth (a ~ const.) or crack arrest (c ~ const.) may be noted at
a glance.

After incrementing the contact circle and crack length new values of a (equations 4-7) and ¢
(equations 8-14) are evaluated for the next cycle. The loop continues until the contact circle
encompasses x., at which point the crack is placed in compression and ceases to grow. The
entire operation is then repeated for a new value of x..

4. Results
4.1. Calibration of program output

The program output specifies the growth of the cone crack with time. The purpose of this
section is to indicate the manner in which the program parameters need to be adjusted to re-
concile prediction with observed behaviour. This adjustment is achieved by forcing the output
data to match the results of calibration test runs, made on 12.35 mm thickness abraded glass
slabs with a 6.35 mm radius tungsten carbide sphere in vacuum. The data might equally well
be reconciled with results from surfaces in their as-received state, but this would involve the
added complication of the statistical distribution of size and location of surface microcracks.
As we shall see, the sensitivity of the calculation to small variations in input data and theoreti-
cal detail leads to some uncertainty in results.
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Figure 7. Computer output ¢ (t) for parameters shown inset. Curves for various increment parameters, N.
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Figure 8. Computer output c (¢) for parameters shown inset. Curves for various x, (labelled). a (¢) also shown.

We illustrate first some typical output data in Figs. 7 and 8. These curves are computed for
room temperature, vacuum conditions, with a uniform load rate P=100 Ns~! and elastic
constants E=7.0x 10'° Nm~2, v=0.31, and k=0.55. Fig. 7 shows the effect of varying the
increment-size parameter, N, for the case where ¢,=10 um and x,=600 um. It is seen that N =
50 represents a suitable optimum, and is consequently used in all subsequent calculations. The
curve corresponding to this value in Fig. 7 indicates a spontaneous growth of the cone crack
from ¢;=10 um to ¢~ 80 um at t~ 8 s, followed by a rapid, stable phase of downward growth
as the loading continues. In this case it is not immediately clear as to the nature of the “critical
visible event”.

Int. Journ. of Fracture, 10 (1974) 1-16
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Figure 8 shows the effect of varying x, this time for the case ¢;=1 um. Flaws at x_ < 480 um
are encompassed within the compressive zone of the Hertzian stress field before they have a
chance to become critical. On the other hand flaws further distant from the contact centre
propagate unstably to a length of order millimetres, whence they become stable. Further
increase in loading causes continued stable extension of the crack, until the surface trace of the
cone is “swallowed up” by the advancing contact circle. In Fig. 8 we choose the crack starting
at x,=500 um as the one which corresponds to the observed critical event, this being the first
crack to become critical. Of course, once this crack begins to propagate, the stress-relieving
effect on the neighbouring flaws will tend to suppress multiple cone-crack nucleation ; that is, the
first crack to become critical will grow at the expense of the others, until the contact “swallows
up” the surface trace and allows the stress field to build up once again. We thus note in Fig. 8
that a critical load P.~1700 N is reached after ~ 17 s loading time, at which instant a=
475 pm, i.e. a/x,=0.95 at critical loading.

4.2. The effect of Poisson’s ratio

In all cases studied the fully developed cone crack tends to follow closely the stress trajectory
pattern shown in Fig. 1. This correspondence between predicted and observed crack path is
shown in Fig. 9. There is, however, a significant discrepancy. The calculated angle between
cone crack and specimen surface for the parameters used in computing the curves in Figs. 7
and 8 is ~26°, where as the observed angle for soda-lime glass is closer to ~22°. If we use a
value of Poisson’s ratio more representative of the values usually quoted for glass, v=0.20-
0.25, the computed crack angle exceeds 30°, thereby worsening the discrepancy. We have to use
a Poisson’s ratio v~0.33 to obtain satisfactory agreement.

b

Figure 9. Cone crack paths in glass. (a) Stress-trajectory pattern, for three values of v (labelled). (b) Observed profile,
obtained by section-and-etch through contact symmetry plane [11].

In fact Poisson’s ratio has a profound influence on the entire stress field. We illustrate this
with reference to Fig. 10, which shows the sensitivity of the “critical fracture load” to variations
in v. In this figure the calculations are for vacuum, room-temperature conditions, with ¢; =10
um. The data are deduced from curves of the type shown in Fig. 7 for N=50. Since a “critical
load” is not clearly defined in Fig. 7, we indicate the loads necessary to produce crack lengths
in the visibly detectable regime, i.e. cracks of order 100 um in length. Now control tests on glass
specimens under the conditions specified above show a sudden crack growth from ¢;=10 ym
to c~1 mm at a critical load P,=1050 + 100 N. Accurate comparison between predicted and
observed behaviour is therefore difficult, but the results in Fig. 10 are nevertheless sufficient to
show that “realistic” values of Poisson’s ratio give fracture loads which are much too small.

On the basis of crack angle and fracture load considerations we are led to choose v=0.31

Int. Journ. of Fracture, 10 (1974) 1-16
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Figure 10. Effect of Poisson’s ratio on fracture load. The different curves indicate the load required to produce a cone
crack of specified length (labelled).

as an “effective” Poisson’s ratio for our calculations on soda-lime glass. This then acts as a
“calibration” of the program output. We are aware that this approach is not entirely satis-
factory, and indicate possible reasons for the uncertainty surrounding Poisson’s ratio in the
Discussion. However, while this uncertainty in program parameters rules out the prediction
of absolute fracture loads, it does not preclude the prediction of relative values. The simulation
procedure is therefore well suited to investigating the effects of such fracture variables as initial
flaw size, load rate, temperature, etc., under specified environmental conditions.

4.3. Effect of initial flaw size

One of the significant predictions of the previous, analytical treatments of Hertzian fracture
theory [3-5] was that the critical fracture load should be proportional to indenter radius
{(Auerbach’s law), but independent of flaw size, as long as the flaws lay within the size range
4x107%a<¢;<1x10"  a. In our experiments with a 6.35 mm radius ball a~500 yum
typically at critical loading, so the limiting range of flaw sizes is about 2—-50 um ; this is the range
normally covered by abraded specimens. It is therefore of interest to check the effect of varying
¢; in the computer simulation.

Programs were accordingly run for a wide range of flaw sizes, each flaw lying initially per-
pendicular to the specimen surface, under vacuum and room temperature conditions. For each
value of ¢, the location parameter x, was varied systematically, and the optimum value selected.
The results, with appropriate values of ¢; and x_ indicated, are shown in Fig. 11. One feature is
immediately noticeable; as ¢; increases the critical event becomes less distinct, and the crack
tends to grow downward in more stable fashion. Adopting as a criterion for fracture the load
required to produce a crack size of 90 um or greater, we predict the smooth curve shown in
Fig. 12.

Tests on glass slabs abraded with different grit sizes have recently been performed under
vacuum (10~ € torr) conditions [17]. The results are indicated by the data points in Fig. 12.
Each point represents the mean value and standard deviation, of three separate runs, each on a
different specimen, with ten results per run. Experiment and theory show the same trend. The
independence of fracture load with flaw size is closely but not exactly respected, noticeable
deviations in behaviour occurring at the limits of the flaw size range. Of special interest is the
observation that larger flaws become less severe as ¢, exceeds &~ 10 um. Close inspection of the
critical event in the experiments showed that the more heavily abraded surfaces are character-
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Figure 11. Effect of initial flaw size on growth of cone cracks. Labels indicate values of ¢; and optimum x, (parentheses).
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Figure 12. Variation of fracture load with initial flaw size. Smooth curve indicates computer prediction, data points
indicate vacuum test results. (Data courtesy A. G. Mikosza and J. J. H. Beek).

ised by a more sluggish growth to the fully developed cone, in accordance with the trend (al-
though not with the scale) in Fig. 11.

The relative location of critical contact circle and surface trace of the cone crack is another
parameter which varies with the initial flaw size. For small ¢, the point of initiation of the cone
crack is very close to the contact circle, while for large ¢, it lies well outside. This tendency is
illustrated in Fig. 13, the smooth curve indicating the computer predictions and the data
points indicating experimental values [17].

4.4. Effect of load rate and environment

In an earlier paper [6] it was shown that the presence of a reactive environment could have a
profound influence on the Hertzian strength. Computer simulations have accordingly been
made of cone crack growth in glass in the presence of water. In all cases the flaw size has been
fixed at c¢;=10 um, and the crosshead speed Z used as computer variable. Figs. 14 and 15
show a selection of crack growth families for Z=1ms™' and 10 ®ms~! respectively, with
T =300 K. It is seen that the general shape of the curves is similar in both cases, with a slight
tendency for the slower load rate to produce an even more sluggish development of the cone
than before. There is, however, a significant difference of a factor of two in the magnitude of the
fracture load in the respective cases.

Fig. 16 shows the variation of load with the load duration at critical fracture (defined as in
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Figure 13. Plot showing relative locations of contact circle and surface ring crack as function of flaw size (from vacuum
computations). (Data courtesy M. V. Swain).
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Figure 14. Computer output c(t) for parameters shown inset. Curves for various x, (labelled). a(¢) also shown.
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Figure 16. Variation of fracture load with load duration and environment. Smooth curves indicate computer predic-
tions, data points indicate test results in water [6] [T =300 K (squares), T =360 K (circles)] and vacuum (data cour-
tesy J. J. H. Beek and M. V. Swain).

the previous section). For the sake of comparison, curves are shown for cone crack formation
in water at T=300 K and 360 K, and in vacuum at T'=300 K. Some experimental data [6, 17]
are included in Fig. 16; unfortunately these data cover only a small range of loading rates, and
are inaccurate at the two extremities of the range covered.

The curves of Fig. 16 show several points of interest. At very fast crosshead speeds, in the
region Z > 1 ms™?, all curves merge and show a rapid increase in P, as t, becomes small. In
this region the behaviour is controlled by the load rate, the condition a > ¢ becoming satisfied
throughout the indentation procedure. At these load rates the crack, even when propagating
at its terminal velocity, cannot respond quickly enough to the rapidly applied load ; in other
words, we are operating in a truly dynamical loading regime.

As the crosshead speed is reduced below Z~1 ms™ ! the nature of the environment becomes
important. The curve representing the vacuum tests levels off, showing only slight decline as
the duration of loading is prolonged. On the other hand the tests in water environment show a
dramatic plunge over the same time scale. The effect of raising the temperature is apparently
to shift the curve to the left along the time ordinate ; this leads to substantial reductions in the
fracture load, especially at the slower load rates.

Finally, experiment also shows that the diminishing critical load in Fig. 16 is accompanied
by more sluggish development of the cone crack [6], and a gradually increasing ratio a/x, [8].
This is consistent with the computer predictions, although at lower load rates it becomes in-
creasingly difficult to assign a value to the critical contact radius with any confidence (see Fig.
15).

5. Discussion

The comparison of the computer simulation predictions with existing experimental data shows
reasonable agreement. However, the uncertainties still inherent in certain aspects of the theory,
together with the limitations of available data, indicate the need for further work. Nevertheless,
the exercise has value in that it leads to an understanding of such hitherto unexplained features
of the Hertzian test as the variation in relative location of contact circle and surface crack,
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the transition from abrupt to sluggish development of the cone with increase in flaw size and
load duration, etc. Inaddition, the computer calculationsextend into experimentally unexplored
regimes, €.g. into the region of dynamic loading in Fig. 16, and thus serve to provide foresight
for future experiments.

The most serious shortcoming of the simulation is that it does not predict the scale of the
rapid cone crack growth observed in experiments. The practicé adopted here of identifying the
critical event with the load needed to produce a cone crack of length 90 um is somewhat
arbitrary. It appears that a more rigorous treatment of the fracture mechanics is required, in
particular accounting for the energetics of a curved crack ; the cone curves more sharply in the
initial stages of growth, where the surface ring begins to flare outward along the stress trajec-
tories, and itis in the early stages that the critical conditions are determined. Again, the question
should be asked whether or not the Hertzian stress field, calculated on the basis of isotropic,
linear elasticity theory, is an adequate representation of reality. In this connection Poisson’s
ratio becomes an important consideration.

For in cases where nominally isotropic materials, such as glass, fused silica, etc., suffer sig-
nificant stresses, the elastic behaviour can become non-linear, and Poisson’s ratio can vary
significantly. Mallinder and Procter [ 18] measured v for fused silica by comparing extension
and shear moduli, and found increases up to a factor of two at strain levels ~0.05. The material,
initially isotropic, becomes orthotropic under tension as the SiO, tetrahedra distort. In our
Hertzian tests the maximum strain (compressive) reaches the same level as above. It is therefore
not inconceivable that non-linear effects, compounded by the inhomogeneous nature of the
stress field, could lead to substantial deviations from ideal Hertzian behaviour. Until such
effects can be taken into account we feel that the procedure of adjusting the “effective” Poisson’s
ratio represents the most suitable means for effecting a calibration of the computer output.
We should, however, emphasise that the trends predicted by the computer calculations are not
sensitive to variations in v.

The effect of initial flaw size on the critical loading brings out some features of particular
interest. As mentioned in section 4.2 the independence of fracture load P, of flaw size ¢ is
central to the applicability of the so-called Auerbach law. It is, of course, this very independence
of Auerbach’s law on the state of the surface damage that makes the Hertzian test attractive,
allowing for high reproducibility in results without the need to take excessive care in specimen
preparation [5]. The earlier theories [3-5] of Hertzian fracture attributed this feature in the
fracture mechanics to an initial stage of stable flaw growth prior to full development of the
cone, and there is experimental evidence to support this contention [11]. However, because
of the uncertainty of the computer output in the critical early stages of ring-crack growth,
there appears to be little chance at present of resolving this particular issue by simulation.

There is, on the other hand, a clear reason for the apparently anomalous result in Fig. 12,
in which the fracture load actually increases as the flaw size becomes large. Referring to Fig. 3
we see that a flaw lying perpendicular to the specimen surface is subjected to distribution of
normal stress which decreases with depth. Small flaws, say ¢;~ 1-10 um, experience relatively
uniform tension along their length, until the contact circle approaches within ~0.9 x.. Such
flaws, when they extend, will be able to curve away from the orthogonal orientation and out-
ward along the stress trajectories (Fig. 1), thereby maintaining tensile stresses along the entire
crack path. On the other hand, larger flaws, i.e. ¢; = 10 um, extend into a region of compression
at their end, and thus have a tendency to close up. This is, to our knowledge, the first reported
instance in which smaller flaws may be more dangerous than larger ones. The argument holds
regardless of the initial orientation of the flaws; owing to the strong curvature of the stress
trajectories near the specimen surface, large inclined flaws would still experience some com-
ponent of compression along their length. '

Yet another aspect of the flaw size factor has its interpretation embodied in the stress distri-
butions of Fig. 3. This concerns the increasing tendency for the cone crack to form remote
from the contact circle as c; increases (Fig. 13). For ¢, < 1 um the flaw suffers near-uniform
tension for all a x,, so the tendency will be for the cone to initiate close to the contact circle,
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where the tensile stress has its maximum value. However, for say ¢;=20 um the rapid fall-off
in stress as a approaches x, is not conducive to extension, and the flaw is more likely to grow
at a~0.8 x,, where the tension remains reasonably high along the entire length.

As to the effects of load rate and environmental interaction on Hertzian strength the com-
puter predictions serve mainly as a semi-quantitative guide to the different regions of behaviour.
Apart from the above-mentioned uncertainties in the Hertzian theory itself the chemical
kinetics of the environmental interactions are not well understood, the rate-dependent equa-
tions being largely empirical. There is also a lack of experimental data for comparison with the
computer predictions, particularly at the extremities of the load-rate range in Fig. 16. Work is
currently being carried out in these laboratories on dynamic loading effects, using shock-load-
ing to produce load durations < 10~ s [19]. At the other end of the time scale experimentation
present some problems, because of the difficulty in identifying a critical fracture load ; more
work should be done in this area, however, with the aim of investigating the existence or other-
wise of a static fatigue limit.

Thus, until the mechanisms of fracture are more clearly established at a fundamental level,
the applicability of the simulation method of crack growth is restricted to those materials for
which crack velocity data are available. The method is nonetheless useful as a model for testing
fracture criteria in contact problems, and, indeed, in any other fracture mechanics problem in
which an analytical solution is intractable. It is then a simple step to adapt the case of normal
loading considered here to the solution for a sliding indenter [20, 21] and to thereby simulate
many of the characteristics of abrasion, erosion, and fragmentation of brittle materials. [22]
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Appendix: The elastic stress field

The Hertzian stress field has the property of geometrical similarity if all spatial coordinates are
normalised to the contact radius a, and all stresses are normalised to the mean contact pres-
sure p,= P/na®. The stresses in the O0XZ plane are given by Huber [2] as follows:

= ()5 - e ) G

+1.5iu[(1—v) - +(1+v)\/u arc tan (i>—2:|

a*+u a Ju
% _ 5 (i)3<—a2" )
Po Ju) \u*+a?z?
Iz _ —1.5( 2x222 2) (az\/u>
Do u“+a“z?/ \a"+u

where
u=3{(x*+22—a?)+ [(x*+22—a?®)* +4a*2*]*} .
The principal stresses across the crack path are

on(x, z) = g, sina+0,, cos?a—20,, sin a cos
where the angle o between the crack path and specimen surface is found from
tan 200 = —20,,/(0,x—0,;) -

Int. Journ. of Fracture, 10 (1974) 1-16



16 ‘ B. R. Lawn, T. R. Wilshaw, N. E. W. Hartley

REFERENCES

[1] H. Hertz, Hertz’s Miscellaneous Papers, Chs. 5 and 6. (MacMillan, London, 1896).

[2] M. T. Huber, Ann. Physik, 14 (1904) 153.

[3] F. C. Frank and B. R. Lawn, Proc. Roy. Soc., A299 (1967) 291.

[4] B.R. Lawn, J. Appl. Phys., 39 (1968) 4828.

[5] F. B. Langitan and B. R. Lawn, J. Appl. Phys., 40 (1969) 4009.

[6] F. B. Langitan and B. R. Lawn, J. Appl. Phys., 41 (1970) 3357.

[7] T.R. Wilshaw, J. Phys. D. Appl. Phys., 4 (1971) 1567.

[8] J. Heavens, unpublished work.

[9] J. J. H. Beek and B. R. Lawn, J. Phys. E. Scientific Instrum., in press.
[10] von H. Rumpf and K. Schonert, Third European Symposium on Comminution, Cannes, France, Oct. 5-8, 1971,

p. 27-56. Dechema Frankfurt; Verlag Chemie Weinheim.

[11] A. G. Mikosza and B. R. Lawn, J. Appl. Phys., 42(1971) 5540.
[12] The stress-intensity factor defined here differs by a factor of \/z from that used in some other papers.

[13] A. A. Griffith, Phil. Trans., A221, (1920) 163.

[14] S. M. Wiederhorn and L. H. Bolz, J. Amer. Ceram. Soc., 53 (1970) 543.

[15] K. Schénert, H. Umhauer and W. Klemm, Fracture, Proceedings of Second International Conference, Brighton,

1969, paper 41.

[16] F.Kerkhof and H. Richter, Fracture, Proceedings of Second International Conference, Brighton, 1969, paper 40.
[17] A. G. Mikosza, J. J. H. Beek and M. V. Swain, unpublished work.

[18] F. P. Mallinder and B. A. Proctor, Phys. and Chem. Glasses, 5 (1964) 91.

[19] P. B. Withers, unpublished work.

[20] G. M. Hamilton and L. E. Goodman, J. Appl. Mech., 33 (1966) 371.

[21] B. R. Lawn, Proc. Roy. Soc., A299 (1967) 307.

[22] N. E. W. Hartley, Ph. D. thesis, University of Sussex, 1971.

RESUME
On traite d’'une méthode générale de simulation sur calculateur de I’extension d’une rupture en forme de cone, telle
qu’il s’en présente lors de mises en charge par contact Hertzien.

Le programme comporte une procédure par incréments, ou I’on accroit par pliers le cercle de contact et la fissure
conique, en se référant a des équations décrivant adéquatement cette croissance.

La vitesse d’expansion du cercle de contact dépend du mode de mise en charge de I'indentation; elle entraine la
création d’un champ de contraintes variables dans le temps. Les critéres appropriés de la mécanique de rupture peuvent
alors étre invoqués pour calculer la relation liant la dimension de la fissure aux contraintes de contact. On a étudié
de maniere systématique les effets du mode de sollicitation, de I’environnement et de la température de I’éprouvette,
de la dimension et de I’emplacement du défaut initial a partir duquel se forme la fissure conique. Les prédictions
fournies par le calculateur s’accordent bien aux données expérimentales disponibles.

Les résultats sont discutés a la lumiére des développements théoriques qui ont déja été consacrés précédemment au
problémes de la rupture sous contact Hertzien, et font ressortir des connaissances nouvelles sur les caractéristiques
d’extension de ce type de fissures.

En principe, les calculs ont été effectués dans le cas d’une charge normale a une surface de verre, mais on envisage
des a présent une extension du programme a d’autres conditions de charge et a d’autres matériaux.

ZUSAMMENFASSUNG

Man behandelt ein allgemeines Komputerverfahren zur Simulation der Ausbreitung eines konischen Bruches unter
hertzischer Kontaktbelastung. Das Programm enthélt ein Inkrementvertahren in dem sowohl der Kontaktkreis wie
der konische RiB stufenweise erwachsen, in Ubereinstimmung mit annehmbaren Ausbreitungsgeschwindigkeits-
gleichungen. Der Kontaktkreis hat eine Ausbreitungsgeschwindigkeit die von der Einzahnungsbelastung abhéngt,
und fithrt dadurch ein zeitlich verdnderliches Spannungsfeld ein.

Dann werden passende Bruchmechanikskriterien angewandt um den Zusammenhang zwischen der RiBausbreitung
und der Kontaktspannungen zu rechnen. Einfliisse des Belastungsverfahren, Umgebung und Temperatur des Priif-
stabes, GroBe und Lage des Anfangsfehlers von dem der konische Rif3 ausgeht, werden systematisch untersucht. Die
Voraussagungen des Komputers sind giinstig vergleichbar mit den Versuchsergebnissen.

Man bespricht die Resultate im Rahmen von bestehenden theoretischen Losungen des Hertzischen Bruchproblems,
und einige neue Gesichtspunkte in den RiBausbreitungsbegebenheiten werden hervorgehoben.

Die Rechnungen wurden besonders fiir normale Kontaktbelastung aut’ Glass aufgestellt, aber schon jetzt werden
Ausdehnungen des Verfahrens fiir andere Belastungen und andere Werkstoffe in Betracht gezogen.
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