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A fracture analysis of contact-induced failure in
tempered glass plate is presented. The analysis is based
on a model system in which a surface-initiated crack of
appropriately simple geometry is driven through a well
defined stress field in the plate. The general field is taken
to consist of three main components: a residual field,
due to the tempering process, either physical or chemical,
for which idealised stress profiles across the plate
(basically, outer compression, inner tension) are as-
sumed; an indentation field, either line-contact or
point-contact type, corresponding to straight or penny-
like crack geometries; a flexural field, due to plate
bending. Of these components, only the first two are
dealt with explicitly in this study, although the general-
ity of the approach is emphasised. The onset of plate
failure is identified with an instability in the crack
propagation, which, for the combined indentation/
residual field, is associated with a critical contact load
(“activated failure™); in the special case of a (remnant)
crack for which the indentation field is zero, the in-
stability is associated with a critical intensity of inner
tension in the plate (“spontaneous failure”).

In the first part of the calculation the simplistic case
of a straight crack of infinite extent along its front is
considered in detail. This configuration, although some-
what unrealistic, establishes the mechanics of the failure
process without complication. In the latter part the
treatment is generalised to include the more practical
case of penny-like cracks, at some expense in mathe-
matical rigour. The theory leads to “universal’ equi-
librium relations for crack dimension in terms of indenter
load, from which the instability conditions are derived.

A feature of the resulting equations for the critical
indentation load to failure is their simplicity of form,
particularly in the limit of “severe tempering”. The key
parameters in these equations are those relating to the
tempering process, notably the intensity and spatial
extent of the residual field, and to the nature of the
indenter/specimen contact; material constants are of
secondary importance, disappearing altogether from the
limiting equations, and flaw characteristics do not enter
at all. Plates characterised by typical degrees of temper-
ing are predicted to fall, to good approximation, within
the compass of this limiting behaviour. N otwithstanding
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an inability in our present formulation to determine pro-
portionality constants in the critical equations to much
better than an order of magnitude, the theoretical
model should provide a sound basis for predetermining
optimum strength conditions in potentially deleterious
contact situations.

Ever since Griffith’s classic study of the rupture of
glass™™ it has been recognised that the ubiquitous
presence of surface flaws (of effective length < 10 pm
typically) reduces the potential stress-bearing capacity
of engineering brittle solids by at least two orders of
magnitude. Various attempts have been made to
achieve tensile strengths closer to the ultimate limit
determined by intrinsic cohesive forces by producing
materials free of flaws, for example by etching the
surfaces; however, the question of durability under
subsequent hostile service conditions generally renders
this approach impractical. By far the most effective
way of strengthening glasses (and to a lesser extent
other, crystalline, ceramics) is to generate a state of
compression in their surfaces.’*~> This may be done
either physically, by thermally quenching glass plate
from just below its softening point, or chemically, by
suitably modifying the atomic structure of the surface
regions of the glass (notably by ion exchange). Both
procedures introduce residual compressive stresses
which inhibit the growth of incipient surface flaws to
such an extent that the applied tensile loading neces-
sary to achieve critical conditions for fracture may be
raised significantly toward the theoretical limit.
Chemical strengthening, as compared to its physical
counterpart, appears capable of producing the higher
intensity of stress within the surface compression
layer, but only at the expense of spatial extent (e.g.
~ 1000 MPa over a layer thickness =~0-1 mm, as
compared to ~ 100 MPa over ~ 1 mm).

The net residual force on a strengthened glass plate
must, of course, be zero. Thus the outer compression
must be balanced by an inner tension, so that a crack,
once it does penetrate the protective surface layer,
tends to propagate catastrophically. If the degree of
tempering is sufficiently high, such propagation may
occur spontaneously, ie. in the absence of any
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externally applied load. It is this property which
makes it almost impossible to cut or drill glass
plate in the tempered state. The accelerating crack
tends to bifurcate repeatedly, its surfaces remaining
more or less normal to, and confined within, the outer
boundaries of the plate, until the entire plate has
fragmented in a characteristic craze pattern.

In practice, tempered glass plates subjected to
external loading fail in one of two basic modes.(: 7
With the first mode, the plate undergoes flexure,
thereby inducing compressive stresses in the loaded
face, tensile stresses in the opposite face. (For dynamic
loading, any subsequent vibration naturally causes a
reversal of these stresses.) Full scale fracture initiates
at some dominant flaw remote from the contact
area, and the strengthening effect arises simply from
the need to overcome the residual closure stresses
acting across this flaw before a net tension can become
manifest. In this situation the strength of the tempered
plate is found to be, in the limit of flaws small com-
pared with the spatial extent of the outer protective
layer, closely equal to the strength of the untreated
plate plus the magnitude of the surface residual
compression. It is clear that in any complete descrip-
tion of the strength properties one needs to take into
account the circumstances leading to the presence
of the dominant flaw: the issues of specimen history,
and thence of flaw statistics, are directly relevant here.

With the second mode of failure, the contact
stresses (alternatively termed “indentation”, or “bear-
ing”, stresses) dominate the overall applied field.
Fracture then initiates in the near-contact zone, and
develops geometrically in a characteristic pattern
which reflects the nature of the indenter/plate con-
tact. The best-known example of a contact fracture is
the Hertzian cone crack, produced by a hard sphere.
With less regular indenters the fracture patterns
become more difficult to characterise; moreover, the
number of variants would appear to be unlimited.
It is because of this apparent diversity in fracture
geometry, coupled with the complexity of the general
indentation field through which the cracks propagate,
that our understanding of the mechanisms of contact
failure has been slow in evolving. Nevertheless, this
mode is potentially the more dangerous of the two:
as pointed out by Glathart & Preston,!” a thermally
strengthened plate may withstand the drop of a
massive steel ball from the top of a building, yet
collapse like a bubble from the impact of a little steel
dart released from a height of ~ 100 mm. Intuitively,
one might expect a variety of extrinsic variables,
notably the intensity and spatial extent of the residual
field in the tempered plate, the indenter/plate contact
stress distribution, flaw parameters, etc., and intrinsic
variables, such as toughness, hardness and stiffness,
to enter the problem. Few serious attempts, even of a
preliminary or empirical nature, have been made to
evaluate the role of any of these variables in the
indentation-induced failure of tempered glass
objects.>: 7

However, recent developments in the theory of
indentation fracture phenomena®~'? reveal features
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of common simplicity in the general growth patterns,
from which emerge the foundations for a detailed
failure analysis. In particular, the indentation cracks,
while certainly determined by the nature of the starting
flaws in their initiation stages, tend in their “well
developed” form to propagate independently of their
origin in accordance with certain universal relations
between applied load and crack dimension. It is the
prime intent of this paper to formulate an appropriate
failure analysis along these lines. We concentrate on
situations where the contact stresses are completely
dominant, mindful of the increasing relative import-
ance of flexural stresses with diminishing plate thick-
ness.” Whereas others have addressed the problem
of fragmentation once catastrophic fracture has
begun,*1- 12 our treatment considers only the critical
conditions for the onset of failure; for it is surely this
second aspect which must provide the basis for
optimum preventitive design. The procedure involves
setting up a somewhat simplistic model of a static
indentation fracture process, applying the principles
of Griffith—Irwin fracture mechanics to the model,**
and then attempting to generalise the results. The
emergent critical equations, which in the limit of
severe tempering reduce to strikingly simple form, are
found to have interesting, perhaps surprising, impli-
cations concerning the parameters which control
resistance to contact failure.

The residual stress field—basic fracture mechanics
relations

STRESS INTENSITY FACTORS FOR STRAIGHT CRACKS IN
INHOMOGENEOUS RESIDUAL FIELDS

We need first to specify the residual stress profiles in
tempered plates free of external loading, and thence to
establish suitable parameters for representing the
capacity of surface cracks to extend within such
plates. Accordingly, we use the residual field equations
to evaluate the stress intensity factors, which measure
the intensity of the local stress field about the crack
tips (hence the driving force for the cracks as indi-
vidual mechanical entities) and which may readily be
incorporated into fundamental fracture criteria.!®
What happens when the plates are loaded will be
taken up later.

Coordinates for the envisaged cracked plate system
are shown in Figure 1. Along the surface normal OZ

2d —_—————— ]

Figure 1. Coordinates for straight crack system in tempered plate
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the plate has thickness 2d, and within the surface
plane OXY the dimensions are infinite. In this
description the residual stress field assumes the single-
variable functional form o = o(z). The simplest
fracture configuration conformant with this field is
that of a straight crack of infinite extent along OX
(say), with its mouth at z = 0 and its tip at z = c; then
the front of the crack coincides with a stress contour
at all points of its prospective extension through the
field, and the configuration is thus essentially two
dimensional. For this special case a standard formula
is available for the stress intensity factor:(!3: 14

K(c) = m{2(c/m) jf [o(2)/(c* — z*)*] dz},

(0<c<24d). (1)

Here m is a dimensionless factor which takes into
account “edge effects”; in a homogeneous field, for
instance, m incorporates a factor 1-12 to account for
the free surface at z = 0, and a factor (4d/nc) tan
(nc/4d) to account for the free surface at z=2d.!314
However, for the present system, in which the field is
necessarily far from homogeneous, the approximation
me~1 will suffice where any absolute evaluation is
required.

Physically tempered plate

Detailed studies of the process of thermal tempering in
glass plates!>-1©) indicate the distribution of residual
(biaxial) stresses acting in the OXY plane to be
closely parabolic across the thickness, with maximum
compression at the free surfaces and maximum
tension at the centre. Figure 2 shows the stress profile.

)
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Residual stress. a(
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Figure 2. Residual stress profile for physically tempered plate

Defining o, as the magnitude of the surface com-
pression, the boundary conditions ¢(0) = — o, =(2d),
along with the requirement that the total force across
the section OXZ (area under curve of Figure 2, repre-
senting section width unity along OX) be zero, i.c.

2d

| a(z)dz =0,

0
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determine the parabolic equation;
o(z) = —og(1—3z/d+3z%/2d%), (0<z<2d). 2)

For this distribution we have a(d)=0'5 gy, ie. the
central tension is of magnitude one half that of the
surface compression. Further, o(z)=0 at z/d=0-423,
1-577, so that each outer compression layer extends
into about one fifth the total thickness of the plate.
The two parameters o, and d uniquely determine the
field, within the approximation of the parabolic
representation of Equation (2).

Let us now insert Equation (2) into Equation (1) and
integrate over the crack length to obtain the “residual
stress intensity factor”,

Kg(c) = m{ —op(nc)*(1 —6c/nd+ 3c?/4d%)},
(0<c<24). (3)
This expression takes on a particularly convenient

parametric form if rewritten in terms of reduced
variables,

Kg(c/d) = — M(c/d)og(nd)?, )
where M is a dimensionless factor,
M(c/d) = m {(c/d)*(1 —6c/nd+ 3c?/4d?)}. (5)

This factor is seen from Equation (4) to represent a
normalised stress intensity factor for physically
tempered plate; it is accordingly plotted in Figure 3.
in the approximation m ~1. We may note that
increasing the degree of tempering, as determined by
the quantity o (nd)*, has the effect of increasing the
absolute scale of Ky(c).
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Figure 3. Normalised plot of stress intensity factor as function of crack
size for physically 1empered plate, zero external loading. Horizontal
broken lines represent condition K_ = const. at increasing degrees
of tempering: arrow indicates crack instability

It is seen in Figure 3 that K, <0 for cracks in the
size ranges 0 <¢/d <0-737 and 1-810 <¢/d <2; in these .
ranges cracks experience a net closure force. Con-
versely, K, >0 in the range 0-737< c/d <1-810; here,
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cracks experience a net opening force. However, little
more than this may be deduced about the mechanics
of crack growth until we introduce a specific fracture
criterion.

Chemically tempered plate

The stress profile for chemically tempered glass plate
is similar to that for physically tempered plate in that
zones of surface compression are compensated by a
zone of central tension. However, significant differ-
ences are also evident. The spatial extent of the com-
pression layers is no longer determined by the thick-
ness of the plate, but rather by some dimension ¢
characteristic of the chemical strengthening process
(e.g. diffusion depth in ion-exchange process); typic-
ally, 6 <d. Figure 4 illustrates the approximate form

R — 0

Figure 4. Residual stress profile for chemically tempered plate

of the profile.>~* ' Within these two outer zones the
distribution is taken to be linear: in the “near surface”
zone (corresponding to surface from which crack
originates) the boundary conditions are ¢(0)= —o,
and ¢(6)=0, so that the required linear equation is

0(z) = —og(l—2/5), (0<2<9); (6a)
in the “far surface” zone, 6(2d) = — 6, and o(2d — ) =0,
giving

0(z) = —op(1—2d/0+2/0), (2d—6<z<2d). (6¢)
Within the inner zone, unaffected by direct chemical
interactions, the stress level is taken to be constant:
invoking the requirement that the area under the

curve in Figure 4 be zero, we evaluate, in the approxi-
mation J <d,
0(z) ~ 0x(/2d) = const., (0<z<2d-9). (6b)

In this case three parameters, gy, J, and d, are needed
to determine the field uniquely.
Substitution of Equations (6) into Equation (1) then
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leads to the following expressions for the stress
intensity factor:

Ky(c/d, 0/d) = —M(c/d, 6/d) ay(nd)* ™
where M for each stress zone is
M(c/5, 8/d) = mg(c/d)*(1 —2¢/nd), (0<c<d); (8a)

= mg(c/8)¥{(1 +/2d)2/n) sin~ }(§/c)
— Qe/no)[1—(1 —62/c?)F] - 6/2d),
(0<c<2d-4); (8b)

= mE(c/é)*{(l + 6/2d)(2/m) sin~ 1(6/c) —
—Q2c/rd)[1—(1—6%/cH)F] —
—(8/nd) sin~"[(2d—d)/c] +
+ (1= 24/8)1 — (2/n) sin~ '[(2d —$)/c])+
+ (2¢/no)(1 —[(2d - 9)/c]?)?},
(2d—6<c<2d). (8¢)

The stress intensity function of Equation (7), in con-
junction with Equations (8), is plotted in normalised
form in Figure S5, once more in the approximation
m. =1, for two values of d/d. It is noted that the plate
thickness enters the fracture mechanics (by virtue of
its role in determining the level of central tension) only
after the crack has escaped the near compression zone.

W 025
g |
B
© |
N { d/d =01
o ! Crack size, /5
5 0 | rack size, c/.
S 1 10 20
&
z 0-01
17
S
E
2 —0254
8 |
= |
o
=3
2
8
& _osof
|
| 1

Figure 5. Normalised plot of stress intensity factor as function of crack
size for chemically tempered plate, zero external loading. Curves
shown for two values of 8/d: note invariance of plot in near compression
zone0 <c<d

Thus, while it is the near zone quantity oy(nd)*
which appears to define the degree of tempering (by
establishing the absolute scale of K;(c) in Figure 5)
most adequately for chemically treated plate, the
thickness largely determines the crack size domains
within which net closure or opening forces operate:
e.g. for the limiting case § <d in Equations (8), we find
Kg<0 in the ranges 0<c/d< 0637 and 2—d/d<Sc/d
<2, and K;>0 in the range 0-637<c/d<2—d/d.

FRACTURE CRITERIA AND SPONTANEOUS CRACK
PROPAGATION

Equilibrium and kinetic fracture

To be able to make quantitative predictions of fracture
behaviour, suitable criteria have to be introduced into
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the description. In a general treatment, one must
specify criteria for both initiation and propagation
stages.!3) Thus far we have considered the effective
driving force for a propagating crack of length ¢
without making any comment as to the origin of the
fracture. In practice, the most common origin is via
mechanical damage: scratching, cutting, drilling,
particle impact, etc. are all capable of initiating
penetrant cracks. Certain chemical and thermal
processes may also act as crack initiating sources.
Such cracks may either nucleate from a suitable pre-
existing flaw in the vicinity of the damage zone, or, in
cases where the stress is locally concentrated at a level
approaching the theoretical limit, be nucleated by the
damage process itself. Once a given crack has grown
beyond the immediate zone of influence of the
nucleating forces it is said to be well developed. In this
picture one may view the overall nucleation and
formation stages of growth as an initial, restraining
perturbation on the far field of the applied loading
through which the well developed crack propagates;
that is, a crack of zero dimension must first overcome
an energy barrier. For instance, Hertzian cone cracks
are produced only upon exceeding a critical indenta-
tion load:® beyond this load, however, the fully
developed cones propagate independently of the
critical conditions. In this work we shall assume that
the energy barrier to initiation is negligible, which is
reasonable if the well developed crack thereby formed
is small compared with that needed to cause total
plate failure. The commonplace observation of intact
tempered glass objects (notably automobile wind-
screens) containing clearly visible surface cracks
(remnant from some earlier damage event) will be
taken as sufficient justification for this assumption at
present.

It then becomes necessary only to specify condi-
tions for the propagation of well-developed cracks. At
the outset, we must distinguish between equilibrium
and kinetic conditions. With equilibrium cracks, the
net driving force just balances the intrinsic (surface
tension) resisting force, corresponding to a stationary
value in the total energy of the crack system (Griffith
condition). In terms of stress intensity factor notation,
this condition may be written!®

K = K, = [2TE/(1-v)]* ©)

with the critical value K_ uniquely determined by the
material constants I', the fracture surface energy, E,
the Young’s modulus, and v, the Poisson’s ratio, of the
plate. At K >K_ the crack accelerates dynamically
(terminal velocity ~1-5kms™! in glass), while at
K<K,_ the crack tends to close up (but rarely com-
pletely, thus explaining the visibility of remnant inter-
faces). Equilibrium conditions tend to prevail in inert

atmospheres, or at low temperatures and rapid loading
rates.

With kinetic cracks, the net driving force falls below
that required to satisfy Equation (9), but is neverthe-
less large enough to activate subcritical mechanisms
of crack growth. Since much mechanisms are gener-
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ally rate-dependent, the appropriate criterion involves
a crack velocity,

v, = v(K), (0K <K), (10)

where v (K) is a positive, monotonically increasing
function. (typically, up to ~1 mms~!). Kinetic growth
in glass is primarily due to chemical interactions with
environmental water molecules at the crack tip.!'®

Spontaneous growth of remnant cracks

We are now in a position to make some quantitative
predictions about crack behaviour in tempered plate.
Consistent with the straight crack analysis developed
thus far, it is taken that the external loading res-
ponsible for initiating the fracture is removed prior to
attaining the level necessary to take the plate to total
failure. Then if the remnant crack were subsequently
to satisfy the dynamic condition K > K_ through the
agency of incremental driving forces (e.g. mechanical
or thermal shocks, chemically induced subcritical
growth), the situation would be ripe for crack bifurca-
tion, thence spontaneous breakup. To see how the
condition for spontaneous propagation may be
influenced by the degree of tempering, we refer to the
special case of physically strengthened plate, Figure 3.
Here the sequence of horizontal broken lines repre-
sents the condition K_=const. at successively higher
levels of temper. If the appropriate value of K corres-
ponds to line 1 for a given plate, then the requirement
for dynamic growth clearly can not be satisfied at any
crack dimension. (Under these conditions it should
be perfectly safe to cut or drill the plate, provided such
an operation does not itself substantially contribute
to the net driving force on any penetrant fissure.) On
the other hand, if line 3 is appropriate, a crack
pentrating to the second (unstable) branch of the
curve in Figure 3 will extend spontaneously from that
branch toward the third (stable) branch, as indicated
by the arrow. Thus line 2 represents our critical
condition for spontaneous propagation, which may
be written

K, = [Kg(0)],ax = Kg(1:325d) = 0-246 op(nd)?,
or, approximately,

og(nd)* ~4K . (11)
Physically, this result indicates that the degree of
tempering needs to be at least four times as great as
the intrinsic resistance to crack growth afforded by
the material if spontaneous failure is to be at all
possible. For typical silicate glasses, K _~5x 10°
Nm~32;19 with a plate half thickness dx 3 mm,
Equation (11) gives o, 21 MPa, a stress level easily
attained in most thermal tempering setups. Of course,
because of our earlier approximation m.x1 in
plotting the curve in Figure 3, absolute values should
be regarded with some caution.

An analogous treatment for chemically strength-
ened plate, Figure 5, gives

K, = [Kg(©)]py = Kg(2d—8) = 0:482 5 (nd)* (8/d)*

11
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in the limit 6 <d in Equations (8). The prerequisite for
spontaneous growth thus becomes

o (m8)* ~ 2K (d/d)*. (12)

Idealised straight crack model for indentation
induced failure

STRESS INTENSITY FACTORS FOR STRAIGHT CRACKS IN
INDENTATION-LOADED TEMPERED PLATE

The straight crack calculation above provides an
indication of the prospective behaviour of tempered
plate containing a fissure remnant from some past
contact (or other) damage event. However, most
failures occur during, not after, any such event. We
must now incorporate details of the contact driving
force for the fracture into our description. Here, the
additive property of stress intensity factors!® allows
for a convenient extension of the analysis developed
thus far.

Figure 6. Coordinates for indentation-driven straight crack system in
tempered plate

A suitably modified fracture system is shown in
Figure 6. Consistent with the original straight crack
picture, we characterise the contact interaction by the
normally applied load P, per unit length along OX.
Prior to fracture the attendant indentation field
contains a strong component of tension across the
prospective separation plane,*? and it is this tension
which drives the formative cracks. Once developed,
the crack is driven by essentially localised, mouth
loading forces, representing effective “wedging” com-
ponents of the applied loading. Stress intensity
factors for well developed indentation cracks in
homogeneous plates have been derived else-
where:(2%- 214 the general result for straight cracks is
expressible in terms of the “bearing stress intensity
factor”

Ky(c) = xP,/ct = yP/Lct (13)

where P = P, L is the total load on a (real) finite
indenter of length L(>d). (Recall that the crack of
Figure 1 was taken to be of infinite extent along OX.)
In this equation, g, like m_ in Equation (1), is a dimen-
sionless contact “constant” which incorporates several
uncertain geometrical factors, such as indenter shape,
indenter/specimen friction, etc.?®

tEither by direct application of Equation (1), substituting the appropriate
component of P, for ¢(0) dz, or by the principle of geometrical similitude.
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For a straight crack in the combined fields of the
bearing and residual stresses, we accordingly obtain
the general stress intensity factor equation

K(%) = K,(€)+ Ko(¥)
= xP/L1* €* — M(%) o(nd)?, (14)

with € =c/4 a reduced crack size, 4 being a character-
istic residual field dimension (for example, d in
Equation (4) for physically tempered plate, 6 in
Equation (7) for chemically tempered plate). This
equation, taken in conjunction with an appropriate
fracture criterion, provides the starting point for a
detailed fracture mechanics analysis.

EQUILIBRIUM CRACK RELATIONS AND CRITICAL
INDENTATION CONDITIONS

Now let us suppose that the indentation-driven crack
evolves under conditions of equilibrium growth. Then
Equation (9) may be combined with Equation (14) to
obtain an explicit relation for the applied load as a
function of crack size,

xP/K Lit = €*{1+ M(%) o,(nd)*/K }. (15)
This may be conveniently reduced to the simple form
[2(%)], = ¢*{1+aM(¥)}, (16)
where we define a normalised index of tempering

a = op(nd)}/K, 17

and a normalised indentation load #= P/P,, the
subscript zero relating to quantities measured in the
untempered state («=0) such that

P, = (P/#%), = (P/c}) At = K _Li¥/y. (18)

For a given tempering process, as characterised by
the function M(%), Equation (16) presents itself as a
universal equilibrium relation in which absolute
values are determined by three parameters: (i) P,
determines the scale of loading, being in effect the
force-necessary to drive the indentation crack through
the distance A in untempered plate, i.e. to =1 [this
parameter may be “calibrated” by direct measure-
ment of the quantity (P/c?),]; (ii) 4 itself determines
the scale of the crack; (iii) o expresses the relative
levels of the extrinsic (residual field) and intrinsic
(surface tension) resistance to crack growth. We
investigate the universal relations for both physically
and chemically tempered plate below, noting that
d#/d¥€ >0 represents stable equilibrium, d2/d¢<0
represents unstable equilibrium.

Physically tempered plate

With M(c/d)=M(%) in Equation (5), our universal
equilibrium relation becomes (mg=1)

[2(®)], = €+ (€ — 6€*/n+ 36°/4). (19)

This function is plotted in Figure 7, for several values
of a. It is noted that the curves corresponding to a=0
(unstrengthened plate) corresponds to stable growth
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Figure 7. Universal equilibrium function P(€) for straight cracks in
physically tempered plate. Curves shown for several degrees of
tempering. Arrowed horizontal line indicates instability in crack
propagation at a = 20

throughout, with complete plate rupture at ¥=2,
P=/2 (although edge effects will generally be
manifest before this state is reached). The effect of
strengthening, «>0, on the resistance to crack
propagation is initially to increase this resistance (via
the near compression zone), then to diminish it (via
the central tension zone), and ultimately to increase
it again (via the far compression zone). For sufficiently
severe strengthening, «>0, this introduces certain
instabilities into the fracture mechanics: in particular,
the function (%) passes through a well defined
maximum, representing a change in the equilibrium
from stable to unstable. Thus the effect of tempering
may be seen as one of establishing a “macroscopic
energy barrier” to the well developed indentation
fracture (not unlike the barrier mentioned earlier in
connection with the nucleation and formation of the
crack, but this time on a considerably larger scale);
once beyond the barrier, however, the crack acceler-
ates rapidly at constant load (or, in a “fixed grips”
arrangement, at constant outer displacement), thereby
taking the plate to failure.}

Our quest for a failure condition therefore comes
down to a straightforward determination of the
maximum in the (%) function. In what follows we
shall designate any quantity evaluated at this maxi-
mum by asterisk notation. Putting d#/d¢¥=0 in
Equation (19), the condition for extrema becomes

f(€) = —1/u (20a)
where
f(®) = 2%*(1 — 12%/n+ 9%?/4). (20b)

tNote that for the more severely tempered plates the 2(%) curves actually
cross the € axis within the central zone. In regions such as these it would be
necessary to apply additional closure stresses to restrain crack extension,
even if the external driving force were to be removed entirely subsequent to
overcoming the energy barrier (as, perhaps, in an impact situation).
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Solutions may be obtained graphically, as in Figure 8,
from intersections between the two functions which
comprise Equation (20). Variation in degree of
tempering is conveniently represented by a shift in
position of the horizontal broken line —1/a (<0,
since « =0 always). For small « no intersections occur,
i.e. the crack never becomes unstable. At first inter-
section, (0-922) = — 1-168, corresponding to a=0-856,
the existence of an instability in the crack system is
imminent. Upon increasing o above this transition
value two intersections occur, the one at smaller €

Crack size, €

Extrema function, f(%)

—2L ‘ J

Figure 8. Graphical solution of Equation (20), for determining extrema
in P(€) function for physically tempered plate

relating to the required maximum in £ and the other
similarly to a minimum (see Figure 7). In the extreme
of severe tempering, a3>0-856, limiting intersections
occur at f(0-323)=0=f(1-374). Thus the critical crack
penetration contracts within the range 0:922>%* >
0-323 as the degree of tempering increases within
0-856 <o <00: in particular, once the tempering
exceeds moderate proportions (say, o >20) the loca-
tion of the instability saturates rapidly at the limiting
value of approximately one-sixth the plate thickness
(i.e. well within the near-surface compression zone
0<% <0423). Substituting this limiting value &*
=0-323 back into Equation (19) gives the corres-
ponding limiting solution for the critical load,

P*a) = 0568+ 0-1492~0-1492, (x> 0-856). (21)

Figure 9 compares the approximate form of this
limiting solution with the exact solution evaluated
numerically over the complete range of allowable .
Recalling that # =P/P,, A=d, recourse to Equations
(17) and (18) enables us to express the critical load in
absolute terms:

P*~0264 6,dL/y, (x> 0-856). (22)

This result has some interesting implications. In its
limiting form, the critical load function is entirely
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Figure 9. Comparison of exact and limiting solutions for normalised
indentation load, P*, at instability as function of degree of tempering,
o, for physically tempered plate. Note nonexistence of instability at
a < 0856

independent of material constants. While this may at
first seem surprising, reference to the earlier Equation
(15) shows that for a>0-856 the intrinsic term
K. [ <1168 gg(nA)*] tends to cancel out ; and it is only
through K_ that material constants can enter the
formulation; see Equation (9). We shall elaborate
further on this point in the Discussion. Extrinsic para-
meters relating to the residual field, o, and d, and to
the contact configuration, y, control the instability.
We may note, however, the absence of any extrinsic
parameters relating to flaw characteristics, reflecting
on the fact that the crack is well developed at critical
loading.

10

w

[=]

Crack size, €

Indentation load parameter, 2

|
W
T

~ 1oL \ U

Figure 10. Universal equilibrium function, P(€), for straight cracks
in chemically tempered plate. Curves shown for several values of o, at
A=0-1
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Chemically tempered plate

Proceeding as for physically tempered plate, we insert
M(c/d, 6/d)=[M(%)] ,from Equations (8), with 4 =6/d,
into Equation (16) to obtain the universal equilibrium
function [#(¥)], , for chemically tempered plate.
Plots of this function are given for various values of
a (4 fixed) in Figure 10 and of 4 (« fixed) in Figure 11
(mg=1). The curves are seen to have the same general
features concerning extrema as the analogous curves
of Figure 7. In particular, the location of the insta-
bility again saturates rapidly at a limiting crack
penetration well within the near surface compression
zone. Then the function [ M(%)] ,= M(%) in Equation
(8a) is the appropriate one to adopt in any evaluation
of the maximum in the equilibrium equation:

[2(®)], = €*+ (€ —2€%/n), (0<E<]). (23)

Accordingly, the condition for extrema, d2/d% =0,
becomes, in the same way as before,

f®) = —1/a (24a)
where
f(®) = 26*(1 —4%/n). (24b)

Graphical solutions, Figure 12, indicate the critical
crack penetration to contract within the range
1 €*>0785% as the degree of tempering increases
within 1-830<a <oo. Thus, inserting the limiting
value €*=0-785 for infinitely severe tempering back
into Equation (23), we have the corresponding
limiting solution for the critical indentation load,

P*() = 0-886+ 0-3930 = 0-3930, (o> 1-830). (25)

A comparison plot between this limiting solution, in
its approximate form, and the exact solution over the
allowable range of a is given in Figure 13. An absolute
expression for the critical load follows, from Equations

0-25

Crack size, €

Indentation load parameter,

e
R
Y
| \
1

Y

I \

Figure 11. Universal equilibrium function, #(€), for straight cracks
in chemically tempered plate. Curves shown for several values of A, at
a = 20. Note invariance of plot in near compression zone 0 < € < 1

tFor thick plates (depth of chemical layer invariant), a weak, secondary
maximum may occur at €* > { (see curves at small 4, Figure 11).
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Figure 12. Graphical solution of Equation (24), for determining
extrema in P(¥) function for chemically tempered plate
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Figure 13. Comparison of exact and limiting solutions for normalised
indentation load, #*, at instability as function of degree of tempering,
o, for chemically tempered plate. Note nonexistence of instability
at a < 1-830

(17) and (18) and #=P/P, A=0:
P*~0-697 ap0L/x, (x> 1-830),

in analogy with Equation (22).

Once more we may note the independence of the
critical load function on intrinsic material parameters
and flaw characteristics.

(26)

More general contact situations

““POINT CONTACT’> LOADING—DISTORTION OF
““PENNY LIKE”> CRACKS IN RESIDUAL FIELDS

In the above treatment we have somewhat idealised
our crack system. Apart from approximations in the
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fracture mechanics analysis, we have the simplistic
physical picture of an indentation mode of failure in
which a contact-induced crack advances stably
through a surface compression layer toward a well
defined instability point, with critical extension
occurring uniformly along the entire front. Now in
most real contact (especially impact) situations, the
geometrical conditions of fracture are likely to be
considerably more complex than this. In what
significant ways, if any, might we expect such geo-
metrical complexities to affect the above expressions,
notably Equations (22) and (26), for the contact
fracture resistance?

Most generally, indentation cracks will tend to be
of the “point contact” rather than “line contact” type.
Even a linear scratch made with a translating particle
should strictly, in the context of contact-induced
failure, be viewed as the trace of a fracture pattern
which, at any given instant, corresponds essentially
to a configuration of point contact loading (although
if the indenting particle were to be removed prior to
failure, and the remnant crack were to extend under
the subsequent action of incremental driving forces,
the line approximation would be appropriate). In
their well developed form, contact cracks produced
by point forces in otherwise stress-free plates tend to
a ‘‘penny like” geometry (i.e. they assume a near-
circular extension front), regardless of the nature of
the indenter:?® “blunt” indenters (e.g. spheres)

C C
T T
C C

c v c

C C

Figure 14. Schematic section views of Hertzian crack (top: “blunt”
indenters) and median crack (bottom: “sharp” indenters) evolution in
point contact loading. C. compression zone: T. tension zone

produce the Hertzian cone cracks already mentioned;
“sharp” indenters (e.g. pyramids, cones) produce
“median” cracks, half-penny configurations with
contact point as centre and load axis as diagonal. It is
here that the major obstacle to a general analysis of
tempered plate failure arises. Quite apart from the

15
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difficulty of computing stress intensity factors in such
cases, the superposed residual stress field will act to
disturb the regular geometry of the cracks.

However, for the level of fracture mechanics treat-
ment aimed at here it is not necessary to undertake a
full-scale, three dimensional stress trajectory analysis
of prospective crack paths®!® in the combined
indentation and residual fields. A few qualitative
remarks, based partly on some visual observations,! )
but mainly on the knowledge that brittle fractures
tend to seek an orientation which maximises the
tensile loading, with equilibration of driving forces
everywhere along the crack front, will suffice.!!®

Figure 14 accordingly indicates the geometrical
evolution of equilibrium contact cracks for the
extremes of blunt and sharp indenters. Taking the
Hertzian configuration first, we may expect the crack
initiated as a cone to take on the appearance of a bell
as it traverses the plate: the outer compressive
stresses will tend to make the crack surface more
shallow, the inner tensile stresses correspondingly to
make the surface more steep (the front remaining
essentially circular). Ultimately, the crack will tend to
flare out laterally as it approaches the far surface
layer, and thence spread through the plate.

As for the median configuration, the crack initiated
as a half-penny will tend to extend preferentially into
the central tensile zone at a point directly below the
contact, and thereafter develop along a continuously
distorting front (the crack plane remaining un-
changed). Again, the crack, once beyond the near
surface compression layer, becomes free to propagate
laterally within the inner confines of the plate.

The geometrical complexity of the equilibrium
indentation cracks represented schematically in
Figure 14, compounded by dynamic processes (not-
ably bifurcation) once a critical penetration is
exceeded, would appear to rule out any possibility of
a general stress intensity factor determination. How-
ever, we are concerned primarily with events im-
mediately prior to instability, which may occur well
within the near surface compression zone (recall that
this is so for straight cracks); in such favourable cases
the distortion in crack pattern may be regarded as
minimal over the propagation range of interest. We
shall accordingly proceed on the assumption that the
essential penny like character of the point-contact
cracks remains intact over this range.

FRACTURE MECHANICS AND UNIVERSAL FAILURE
RELATIONS FOR POINT CONTACT LOADING

We attempt now to develop a general fracture
mechanics formulation for penny like cracks in
tempered plate, retaining the essential elements of the
simplistic straight crack model. In line with the
implications of Equations (22) and (26), we may
anticipate characteristic parameters of the residual
field, representing both intensity (sp) and spatial
extent (4), and of the contact configuration (), to play
a key role in the failure mechanism.
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Stress intensity factors—dimensional analysis

We have already alluded to the difficulty in com-
puting stress intensity factors for complex crack
configurations. In seeking an appropriate expression
for extension through the combined residual and
bearing fields analogous to that of Equation (14),
formulae need to be obtained for the components
K; and K. It turns out that the formidable prospect
of a first principles analysis can be conveniently
circumvented here by making use of the geometrical
similarity of well-developed penny like cracks, adopt-
ing a dimensional argument to determine each of the
two components separately.

Let us start with the residual stress intensity factor.
Since the surface compressive stress —o, uniquely
determines the intensity of the residual field, e.g.
Equations (2) and (6), it may immediately be inferred
that K, oc —oy. Again, since the characteristic crack
dimension ¢ uniquely determines the spatial extent of
fracture for a geometrically similar system, the
dimensional form of the stress intensity factor re-
quires that Kpocct. Now if the field were to be
homogeneous, incorporation of a dimensionless, edge
effect term m, =my(c/d) would exhaust the remaining
independent variables. Then to allow for an in-
homogeneous field, whose gradient is uniquely deter-
mined by the characteristic dimension 4, it becomes
a simple matter of incorporating a further dimension-
less term my=my(c/A). We may therefore write
generally, for a given plate,

Ki(c) = —mgmyoy(nc)t
= —M(@)og(ni)} = K (%), (27)

in accordance with our earlier, reduced notation. The
form of K, in this expression is seen to be essentially
the same as that in Equations (4), (7), and (14) for
straight cracks.

Now let us turn to the bearing stress intensity
factor. In this case the intensity of the stress field is
determined by the point load divided by a character-
istic support area (taken as area of the surface every-
where distant ¢ from the contact), so that Kyoc P/c?.
(This term automatically allows for inhomogeneity
in the field.) The factor representing the spatial extent
of fracture must remain unchanged, i.e. KBocc*, since
it is the same crack that is being subjected to the two
fields. This leaves only an indentation geometry term
¥ (which automatically allows for edge effects) to be
incorporated. Our general stress intensity factor for
point contact indenters becomes

Ky(c) = xP/c*?
= yP/A32@%2 = K (¥). (28)

Thus, with the indentation field the form of K differs
slightly from that in Equations (13) and (14) for
straight cracks.f A more rigorous derivation of
Equation (28) is given elsewhere.??

1This comes about as a result of replacing Lc (line contact cracks) by c?
(point contact cracks) as the support area for the indentation load.
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The composite stress intensity factor may therefore
be written

K(®) = yP/3*2€3% — M(%)o,(nA)t. (29)

As with the analogous Equation (14), this expression
provides a basic starting point for a complete fracture
mechanics analysis.

Equilibrium cracks and critical indentation relations

Combining Equation (9) with Equation (29) gives an
equilibrium relation for the indentation cracks:

AP/K 2% = €*2{1+ M(€)og(nA)}/K }. (30)
This may be reduced to
[2(®)], = €>*{1+aM(¥)}, (31)

where o is a normalised index of tempering as pre-
viously defined, and #=P/P, is a normakised
indentation load such that

P, = (P/®%?), = (P/c%?*),A3* = K A3?%/y, (32)

the subscript zero indicating quantities measured in
the untempered state. Equation (31) is our universal
equilibrium relation for point contact loading, in
which the dimensionless function M(%) characterises
the tempering process.

Then as long as the equilibrium function 2(%) has
a well defined maximum, such that failure may be
associated with a critical crack penetration €* and
corresponding residual-field function M(%*)=M?*,
Equation (31) provides an explicit expression for the
critical load in terms of degree of tempering. In the
limit of severe tempering we obtain

P¥a) = €* 21+ M*o) = €*3 2 M*a, (a> 1/M*).(33)

Combination with Equations (17) and (32) gives the
critical load in absolute terms;

P*=xconst. ggA%/y, (point contact; >1/M*).  (34)
This compares with the corresponding result for
straight cracks, Equations (22) and (26);

P*=xconst. 6zAL/y, (line contact; a> 1). (35)

Thus, despite considerable uncertainty in the details
of the 2(%) functions for given tempered plates, we
have been able to determine the essential form of the
failure relations for basic indentation fracture systems.
It is only the constants of proportionality in Equations
(34) and (35) which depend on such details. Equations
(22) and (26) indicate these constants to be of order
unity; for a more exact evaluation than this one
might consider resorting to computer techniques
(using finite element analysis, say), but direct experi-
mental calibration (with plates and indenters whose
characteristics have been independently determined)
would perhaps be simpler. Once more we may note
the absence of any material or flaw parameters in the
limiting failure relations.

Notwithstanding the need for experimental verifi-
cation of the above results, we might feel justified in
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seeking an order of magnitude estimate of a typical
load to failure. Referring to Equation (34), we insert
the following values for Vickers diamond pyramid
indentation on physically tempered glass plate:
const. x1; o * 100MPa and 1 =d = 3mm; y =
K /(P/c*?)y ~ 5 x 10°Nm™%?/1 x 10" Nm™3? »
0-052%, This gives P* ~ 2 x 10*N, a substantial
load in conventional indentation fracture testing.®

Discussion

We have derived simple relations for the critical load
to contact failure in tempered glass plates. Our
analysis has been based on several assumptions and
idealisations; these, however, bear chiefly on the
proportionality constants in the critical relations. The
extreme range of conditions covered, from line contact
to point contact loading, straight crack to penny
crack geometry, blunt to sharp indenters, etc., should
embrace most real contact situations. Although
exclusive consideration has been given to static crack
systems (or quasistatic systems where kinetic effects
have been involved), the analysis may be readily
extended to include certain well defined impact
situations: provided the contact velocity, v, does not
approach the velocity of elastic waves in the system,
knowledge of the static contact force/displacement
behaviour permits a unique determination of the
function P(v)?? (the incursion of dynamic terms at
high contact velocities invalidating this procedure),
hence a critical velocity v*.

Of particular interest are the results in the limit of
severe tempering. For a given indenter it is the residual-
field parameters o, and 4 in Equations (34) and (35)
which control the resistance to contact failure. It will
be recalled that the critical penetration corresponding
to instability in the well developed fracture system
tends to fall within the near surface compression zone:
this leads to the limiting picture of crack evolution in
terms of a balance between two dominant forces, in
which the indentation field alone drives the crack and
the residual field alone resists it. With the intrinsic
surface tension term insignificant in the balance of
forces, knowledge of the physical properties of the
test material is unnecessary.t So also is knowledge of
the flaw statistics, provided the material is sufficiently
brittle (as most silicate glasses usually are) under the
operative test conditions that the energy barrier to
ultimate instability of the crack greatly exceeds that to
initiation.

In this same context of limiting behaviour, even
gross uncertainty as to the correct form of the condi-
tion for crack propagation has little bearing on the
results. We have taken the equilibrium condition
K =K_, as per Equation (9), as our basis for predicting
the onset of plate failure, throughout the above
analysis. Others might contend that a more correct
condition for failure should be K=K, ~4K 2324
with K, corresponding to the stress intensity factor

+Of course, it is appreciated that mechanical, thermal and chemical proper-
ties must be instrumental in determining the residual-stress profile for any
given tempering process in the first place.
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at which branching occurs, since catastrophic break-
down of the plate certainly does involve a fragmenta-
tion mode. However, replacement of K_ by K, in
Equations (15) and (30) would lead to precisely the
same limiting results as before: either term is negli-
gible in comparison with the residual-field term
aR(ni.)i" in these equations, and hence cancels. Simi-
larly, the influence of kinetic crack growth, as per
Equation (10), must be expected to be infinitesimal:
this is because the range of crack penetrations over
which the condition 0 KK < K_ (the maximum range
of stress intensity factors over which subcritical
extension can occur) is satisfied, at a given indentation
load, itself becomes infinitesimal in the severe
tempering limit. (That is, for og(n4)? > K_ in Equations
(14) and (29), small changes A€ correspond to large
changes 4K >K_.) These remarks apply not only to
indentation-induced failure, but also to spontaneous
failure from remnant cracks as outlined in an earlier
section of the paper: thus we may note in Figure 3
how an increased degree of tempering for physically
tempered plate, as represented by the sequence
1-2-3-, diminishes the range of crack penetrations
over which the condition 0 S K< K _ prevails.

Of course, for real contact situations the limiting
failure relations can provide no more than first
approximations to the critical load. The error incurred
in extrapolating these relations back to low degrees
of tempering may be gauged from Figures 9 and 13.
To illustrate, let us investigate the prospective error
for typical strengthened glass plate using values
previously quoted for the relevant parameters: with
K, x5x10°Nm~ %2 6, ~ 100 MPa,and A=d ~3 mm
(physical tempering) or o,x~1000 MPa and ~.=0
~0-1 mm (chemical tempering), Equation (17) gives
o= 20-30, which is seen to correspond to an error of
less than 209%;. At lower values of o the discrepancy
rapidly increases, as the contribution of the intrinsic
surface tension term makes itself felt in the overall
fracture resistance. However, in this region the whole
concept of failure instability becomes less well
defined, and cracks are more prone to arrest without
ever achieving a fragmentation configuration.

There remains the issue of flexural effects in the
plate failure process. As mentioned in the introduc-
tion, such effects are likely to cause a transition to a
“catastrophic flaw” mode of failure as plate thickness
diminishes.” (A similar transition may be envisaged
as indenter bluntness and softness increase. in terms
of an enhanced initiation barrier to contact fracture.)
Ultimately, therefore, optimum strength design calls
for a complete description of both modes. In this
connection it is interesting to reflect that a change in
strengthening procedure (e.g. in going from physical
to chemical tempering) which raises the resistance to
failure in the catastrophic flaw mode (by virtue of
increasing o) might well lower the resistance in the
indentation crack mode (by virtue of decreasing »).
Standardised safety tests for tempered glass objects,
generally being concerned more with simulating
service conditions than with elucidating the physical
processes of failure themselves, rarely consider such
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factors in the evaluation of strength characteristics:
the testing of strengthened spectacle lenses (e.g. ball
drop test, ballistic missile test)?% is just one example
in which data obtained is of little or no use in pre-
dicting behaviour under alternative contact situations.

Even in cases where the indentation crack mode of
failure is known always to prevail, flexural effects can
be important. For a start, since the indentation crack
initiates on the compression side of a bent plate, an
additional closure term should be added to the crack-
force balance equation. Thus, in analogy with
Equations (27) and (28), one obtains a flexure stress
intensity factor for a centrally loaded circular plate,*®’
K= —mm/(P/d?)(nc)', where m_ incorporates
details of the specimen support and the remaining
terms have their previous meaning. Addition of this
component to the composite stress intensity factor,
Equation (29), would clearly lead to increased P* in
equation (34). Again, the partition of energy delivered
by the loading system into the indentation and
flexure fields will inevitably increase the work to
failure: for a fixed energy system (e.g. impact particle
of fixed velocity) this will lead to a diminished contact
load. Seen in this light, the results of the present
analysis derived in the zero flexure approximation
serve as a conservative basis for design against
indentation-induced failure.
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