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Abstract—A simple atomic model for incorporating the effects of chemically-assisted fracture is de-
scribed. Development of the model is in two parts, which can be formulated independently: (i) the crack
itself is represented by two elastic semi-infinte chains of atoms, linked transversely by stretchable bonds
(quasi-one-dimensional representation); (ii) the chemical interaction, which takes place at the crack tip
atoms, is represented by a classical reaction between two diatomic molecules. While clearly oversimplis-
tic in relation to real structural materials, the approach offers insight into the actual mechanisms of
crack-tip chemistry. In particular, the factors which contribute to the generalised force on the crack-tip
bond (viz. the applied load, the lattice, and the cohesive force itself) are clearly identified. and conclu-
sions may be drawn in a quite general way about the prospective response of alternative crack systems.
The mechanisms of chemically-assisted crack growth under either equilibrium or kinetic conditions are
contained naturally in the formalism. Although explicitly set up along the lines of an idecally brittle
crystalline cleavage, the model may well be extended to traditionally more complex crack configurations.
e.g. as in glasses and metals.

Résumé—Nous présentons un modéle atomique simple pour tenir compte des effets de la rupture
assistée chimiquement. Le modéle est articulé en deux parties, qui peuvent étre présentées indépendam-
ment: (i) la fissure proprement dite est représentée par deux chains d’atomes élastiques semi-infinies.
reliées transversalement par des liaisons extensibles (représentation quasi-unidimensionnelle): (ii) I'inter-
action chimique sur les atomes de I'extrémité de la fissure est représentée par une réaction classique
entre deux molécules diatomiques. Bien qu’elle soit évidemment simpliste par rapport & la structure des
matériaux réels, cette approche permet d’étudier les mécanismes réels de la chimic 4 I'extrémité de la
fissure. En particulier, les facteurs qui contribuent a la force généralisée sur la liaison alextrémité de
fissure (4 savoir la charge appliquée, le réseau et la force de cohésion elle-méme) sont clairement
identifiés et I'on peut tirer des conclusions assez générales sur la réponse attendue d’autres systémes a
fissure. Les mécanismes de la croissance des fissures assistée chimiquement dans des conditions cinéti-
ques ou d'¢quilibre sont naturellement contenus dans ce formalisme. Bien qu’il soit explicitement établi
le long des lignes d’un clivage cristallin idéalement fragile, ce modéle peut étre étendu a des configur-
ations de fissures plus complexes, comme C'est le cas dans les verres et dans les métaux par exemple.

Zusammenfassung—Ein einfaches atomistisches Modell wird beschrieben, welches die Effckte chemisch
unterstiitzten Bruches umfat. Das Modell wird in zwei unabhingig formulierbaren Stufen entwickelt: (i)
der RiB selbst wird dargestellt mit zwei elastischen halbunendlichen Atomketten, dic miteinander iliber
dehnbare Bindungen zusammenhingen (quasi-eindimensionale Darstallung). (ii) dic an den Atomen der
RiBspitze angreifende chemische Wechselwirkung wird als klassische Reaktion zwischen zwei diato-
maren Molekiilen dargestellt. Wenn auch zu stark vereinfacht in Hinsicht auf reale Materialien. so liefert
diese Ndherung doch Einsichten in die an der RiBspitze tatsichlich ablaufenden chemischen Mechanis-
men. Insbesondere werden die Faktoren, die zur generalisierten Kraft auf dic Bindungen an der Rif}s-
pitze beitragen (d.h. die angelegte Last, das Gitter und die Kohiision selbst) aufgefunden: auf das
voraussichtliche Verhalten alternativer Rilsysteme kann in ganz allgemeiner Weise geschlossen werden.
Die Mechanismen chemisch unterstiitzter RiBausweitung sowohl unter Gleichgewichts- als auch kinetis-
chen Bedingungen werden von diesem Formalismus miterfaBt. Das Modell, das explizit fiir Bedingungen
ideal sproder Kristallspaltung formuliert ist, kann auf komplexere RiBkonfigurationen z.B. in Gliiscrn
und Metallen ausgeweitet werden.

1. INTRODUCTION

The quest for an understanding of fracture processes
at a fundamental level has provided considerable im-
petus to the atomic modelling of crack tips (for
reviews, see Refs. [1-5]). Even simplistic models, [6]
while perhaps not directly applicable to ‘real’ struc-
tures, usefully demonstrate the connection between

t On study leave from University of New South Wales
Australia.

macroscopic fracture parameters (¢.g.. elastic modulus,
surface energy) and interatomic force laws. and there-
by serve as a basis for predicting crack response from
first principles. Moreover, the solutions of the equilib-
rium equations for the discrete-structurec models show
one major feature not apparent in their continuum
counterparts—the existence of atomic energy barriers
to crack growth (lattice trapping’). a concept central
to any discussion of thermally-activated fracture. Al-
though most attention to date has been dirccted to
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the intrinsic barriers which occur naturally in isolated
crack-tip systems, by far the most important practical
manifestation of activated crack growth is that which
owes its origin to the weakening effect of an ex-
traneous chemical species. The present study accord-
ingly seeks to extend the base of the atomistic models
to allow the incorporation of crack-tip chemistry.
Our approach here, foreshadowed in recent treat-
ments of lattice trapping models [7, 8], is to work
with a system which minimizes mathematical compli-
cation, yet does not exclude general conclusions. The
basic idea is essentially a combination of two separate
developments: (i) with proper choice of coordinate
system, the solutions for the displacements of linearly-
connected atoms in an equilibrium crack system can
be effectively decoupled from the nonlinear force
function which determines the rupture of crack-tip
bonds, thus providing for complete flexibility in the
choice of interaction process for crack-tip atom
pairs [5]: (ii) the interaction between any such crack-
tip atom pair and an extraneous molecular species
may be conveniently described in terms of displace-
ments in configurational-energy space [2, 8], in the
classical manner of chemical reaction-rate theory [9].
Our specific model, therefore, is similar to the quasi-
one-dimensional chain representation of earlier
work [6] but with the crucial crack-tip atom pair
treated as an embedded diatomic molecule free to
interact with a second molecule from the environ-
ment. This approach conveniently allows for recourse
to well-established formalisms of the lattice-
mechanical and chemical aspects of the problem.
One of the major underlying aims of the current
study is to present a framework for rationalizing the
ostensibly complex nonlinear processes which con-
tribute to the broad phenomenon of brittle fracture.
The central point of our argument is the ‘sharp-crack’
concept, i.e. brittle cracks grow via the sequential rup-
ture of cohesive bonds at the crack tip. There is now
compelling evidence, both theoretical [3] and experi-
mental [10], to indicate that this is certainly the
mechanism of fracture in strongly-bonded, covalent/
ionic structures (ceramics) at room temperatures;
indeed, there is a growing school of thought which
suggests that the sharp-crack concept may retain its
validity in metallic structures, even in cases where
(‘non-blunting’) flow processes about the tip account
for the greater part of the material toughness [11-14].
In this context, the model allows us to draw some
conclusions concerning the influence of atomic struc-
ture (including that of the environmental species) on
crack growth characteristics. Again, the one-
dimensional form of the analytical solutions given
explicit consideration here is not necessarily restric-
tive: the ‘embedded diatomic molecule’ notion would
appear to be equally valid in describing the inter-
action at, say, a kink site on an extended crack
front—only the elastic response of the constraining
structure would differ. Similarly, we focus our atten-
tion on equilibrium configurations, in the knowledge
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that, once the activation energies for bond rupture are
evaluated, kinetic effects may be determined by the
conventional methods of statistical thermodyn-
amics [8].

2. EQUILIBRIUM SOLUTIONS OF
ONE-DIMENSIONAL MODEL

In this section the mechanical stability of the quasi-
one-dimensional crack model is investigated, first in
the absence of any chemical environment and then
with potentially reactive species present at the criti-
cally strained bonds.

2.1 Intrinsic bond rupture

Consider the atomistic model shown in Fig. 1, after
Thomson et al.[6]. The atoms are bonded in two
semi-infinite chains by bendable (longitudinal) and
stretchable (transverse) spring eclements. Opening
forces P at the free ends of the chains produce dis-
placements u, at the crack mouth, thereby doing
mechanical work on the system. The stretchable ele-
ments up to the nth bond are assumed to be ‘broken’,
ie. stretched beyond their range of interaction, thus
defining a finite crack length. We shall assume all
spring elements to be linear in their force/displace-
ment response, except for the crack-tip bond itself
which is necessarily nonlinear. Of course. once the nth
bond has parted, the next bond becomes the most
highly strained element in the system, and accordingly
takes up the nonlinear configuration of its predecessor.

To determine the equilibrium conditions for this
system [5-7] we must first specify the characteristics
of the spring elements, Fig. 2. For any stretchable
bond j the required information is contained in the
interatomic force function fi(u;) or potential energy

Fig. 1. Quasi-one-dimensional model of a crack. Atoms are

linked longitudinally by bendable elements. and trans-

versely by stretchable elements: only the transverse cle-

ment BB, representing the crack-tip bond. is considered to
be displaced in a region of nonlincar response.
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(a)

2u.

(b)

2u,

Fig. 2. Potential energy and force functions for bonds

stretched across crack plane. Note in the f;(u;) plot that the

initial slope gives the stiffness, and the area under the curve
the bond-rupture energy.

function U,(u;), wheret

Jo = CU,/0(2u;). (1)

Then for displacements within the linear region we
may define an elastic stiffness constant

o = [dfy/d(2u;)]=° 2

Again, we may define a bond-rupture energy for dis-
placements to the cutoff limit

2u,

b= Jo d(2u;) = Usgsg; 3)

o
i.e. the energy required to rupture the bond reversibly
is simply the intrinsic cohesive energy. For the bend-
able elements we specify a spring (rigidity) constant f
representing resistance to angular distortion of the
bonds which link at j. The total potential energy of
the crack system thus takes the form

U= —2Pu0 + B Z (u,-“ - 2Uj + uj_,)z
j=1

J

2u, -]
fodQu,) + 20 Y ul. ()

j=n+1

+ nUgg +

The first term on the right-hand side is the potential
energy of the loading system; the second term is the

+ We adopt the definition in equation (1) with a conven-
tional negative sign omitted as a matter of convenience, in
order that f, > 0 for all u; > 0; it is thereby to be under-
stood that positive f, represents a restoring cohesive force.

1 E. Smith [15] has recently purported to show that lat-
tice trapping must exist in any discrete structure, in which
case the upper curve in Fig. 3(a) may not represent a re-
alistic configuration.
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strain energy in the bendable elements; the remainder
of the terms pertain to the stretchable elements, repre-
senting respectively contributions from bonds behind,
at, and ahead of the tip. At given applied load and
crack length the conditions for equilibrium are

U/Qu) =0 (j=01,...... ), 5)

which corresponds to an infinite set of fourth-order
difference equations. Analytical solutions of the func-
tional form u;(P, n, u,) are obtainable for all but the
crack-tip bond, i.e. for all j #+ n.

Combination of these equilibrium-displacement
solutions accordingly reduces the system potential
energy to an explicit function of the crack-tip dis-
placement u,, which may be varied arbitrarily:

U,= —2P(1 + nf§u,
— (P?/6f)n (2n* + 3n§ + 1)
+nUgg + Uylu,)

+ @ - Doy’ ©6)
where § = {[1 + (1 + 88/2)!"?]/2}'? is a composite
elastic coefficient. We may now define a generalised
net force for crack-tip bond rupture,

Fn = - aljn/a(zun)
= PO + nf§) — flu)) — § — Dowy;

for F, > 0 the bond opens, for F, < 0 it closes.

This result is particularly useful for demonstrating
the interrelationships between the factors which con-
tribute to intrinsic bond rupture in brittle fracture.
The first, positive term on the right-hand side of equa-
tion (7) represents the applied driving force for the
fracture; the second and third, negative terms rep-
resent the resisting forces. The third term is of special
interest here: it corresponds to the restoring force
exerted on the crack-tip atoms by the remainder of
the (linear) structure, and simply augments the restor-
ing force supplied by the nonlinear connecting bond.
We may note that this ‘lattice’ force is uniquely deter-
mined by the elastic spring constants of the constitu-
ent elements - it contains no explicit information on
the atomic displacements other than those at the
crack tip itself. Consequently, the structure may be
considered in terms of an equivalent linear elastic
‘continuuny’, of stiffness (§ — 1)a, into which the separ-
ating crack-tip atoms BB are embedded.

It is instructive to consider the graphical represen-
tations of the system force functions in Fig. 3. The
solid curves in Fig. 3a are composite plots of the re-
storing force terms, i.e. the nonlinear cohesive term
fy(u,) and the linear constraint term (§ — 1)ou,[5]. The
three cases depicted correspond to different f/x ratios
(the lowest curve representing the zero-rigidity limit,
B =0, and the highest curve conversely representing a
high-rigidity extremef, 8 » «). We focus our attention
on the intermediate case, which is seen to possess a
maximum and a minimum. Figure 3b is a plot of the

™
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Fig. 3. Graphical construction showing (a) restoring force,

and (b) net bond-rupture force, as function of crack-tip

displacement. Curves are representations of equation (7)
for intrinsic bond rupture.

net-force function equation (7) for this particular case:
the construction here is made simply by inverting the
restoring-force curve, and relocating its origin a dis-
tance P(1 + n/§) along the ordinate. According to this
description, the effect of increasing the applied load P
may be conveniently represented by displacing the
entire curve vertically upward on the plot. The re-
quirement that the crack-tip displacement correspond
to an equilibrium configuration, ie. F, =0, is satis-
fied where the curve intersects the abscissa. Thus, in
general, there exists a range of applied loads
P_ < P < P, for which there are three equilibrium
configurations. The equilibria corresponding to con-
figurations I and II are secen to be stable: at I, the
atoms at j = n are held together predominantly by
the cohesive forces — i.e. the bond is ‘intact’; at II, it is
the constraint of the surrounding structure which
dominates — ie. the bond is ‘broken’, and the crack
has advanced through one complete atomic spacing.
Likewise, the intervening equilibrium configuration I*
is unstable. In terms of this picture, we may identify
the load P, (where solutions I and I* coalesce) with
the critical condition for spontaneous crack advance,
and P_ (where II and I* coalesce) similarly with the
critical condition for crack retreat.

The model also provides the necessary quantities
for a description of thermal effects in brittle fracture.
In line with equation (7), the shaded areas under the
curve in Fig. 3b correspond to forward (bond break-
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ing) and backward (bond remaking) energy barriers
for the system at given load P and crack size n:

I*

AU+ = U:: - U:. = - Fn d(zun) (83)
§
"
AU_ =Ul - U= — f F,dQu,). (8b)
11
True thermal equilibrium then obtains at

AU, = AU _, which defines the quiescent crack con-
figuration appropriate to the Griffith energy-balance
notion. The individual contributions of the terms in
the force function equation (7) (i.e. the applied load-
ing, cohesive, and lattice terms) to the barrier heights
may be deduced graphically from Fig. 3. A more for-
mal evaluation of the integrals in equation (8) requires
an analytical expression for the nonlinear function
fulu,) - specific examples are treated else-
where [5, 6, 8].

The construction of Fig. 3 lends itself to ready
adaptation to the concepts of crack-tip chemistry.
Thus, passage from the stable crack configuration I to
the equivalent configuration II may be deemed to
proceed along the ‘reaction coordinate’ 2u, via the
‘activated complex’ configuration I*. In a more gener-
alised configurational-space representation, the sys-
tem potential energy function U(ug, uy, ........ ) pos-
sesses a series of local minima corresponding to suc-
cessive positions of the advancing tip; the reaction
path then becomes a complex function of successive
crack-tip displacements, progression from one energy
minimum to the next occurring via a saddle point in
the hyperspace [8].

2.2 Extrinsic (chemically-assisted) bond rupture

Now let us adapt the model to allow for chemical
interactions at the crack-tip bond. To this end, we
make special note of the simple manner in which the
nonlinear force term f, enters equation (7): chemistry
may thus be accommodated exclusively via this term,
without in any way affecting the applied loading and
lattice contributions to the total force function. In
other words, the mechanics of fracture are the same as
before ~ only the mechanism is different, so the prob-
lem reduces to one of determining a suitable cohesive
force representation for any specified interaction pro-
cess.

For simplicity, the system we take as our basis for
discussion is that illustrated in Fig. 4.[2] An environ-
mental molecule A-A interacts with the crack-tip
bond -B-B-, producing ‘terminal’ bonds A-B-.
Since we are free to consider any such crack-tip event
independently of the remainder of the crack system,
we may conveniently regard the rupture process in
terms of the well-studied reaction between diatomic
gas molecules, AA + BB—2AB[16]. All bonds
broken in this way are saturated at the free crack
surfaces, so incoming molecules remain relatively
inactive until they arrive at freshly exposed atoms at
the tip. Implicit in our description is, of course, the
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Fig. 4. Schematic of chemically-induced bond rupture.
Extraneous molecule AA reacts with crack-tip bond BB ro
produce ‘terminal’ bonds AB.

assumption that one molecule interacts with one
bond in a single-step process—however, while depar-
tures from this assumption must inevitably introduce
added complexities into the analysis, the basic
approach is expected to be quite general.

The interatomic potential energy and force charac-
teristics for the ‘diatomic-molecule’ representation are
depicted in Fig. 5. In this diagram the curves are plot-
ted as a function of B-B separation, with AA adjusted
to a position of minimum energy at each point along
the ‘reaction coordinate’ 2u;. Thus for small crack-tip
displacements u;, the atoms BB are only slightly per-
turbed from their initial bond configuration, the mol-
ecule AA assuming an equilibrium position some
atom spacings distant in accordance with a weak van
der Waals interaction. The energy curve depicting the
unreacted state AA + BB will therefore differ little in
shape from that for an isolated bond B-B, Fig. 2. On
the other hand, for large u;, such that B-B is effec-
tively dissociated, conditions are more favourable to
the formation of A-B bonds. The energy curve depict-
ing the reacted state 2AB will then tend to rise as the
BB separation diminishes, owing to polar repulsion of
the like AB configurations across the separation
plane. At any given B-B separation the appropriate
energy state will be determined by the lower of the
two curves in Fig. 5a, with rounding off at the cross-
over point due to resonance between the two con-
figurations. From the equivalent representation of this
crossover phenomenon in the force/separation plot of
Fig. 5b, we see that the elastic stiffness of the BB bond
is essentially the same as before, equation (2). How-
ever, the bond-rupture energy required to take the
crack-tip atoms reversibly from their initial bound
state to the final reacted state is significantly modified
for all 2Usg > Uaa:t

2u,

U = fodQuj) = Upa + Uy — 2Uss 9)

0
where 2u, is the cutoff displacement for the 2AB force
curve. The value of Uj may thus be much less than
the quantity Ugg appropriate to intrinsic bond rup-
ture, equation (3), and may even become negative.

TIf 2Uap < Uaa the potential energy curves in Fig. Sa
never cross, in which case Uj is given as before by Equa-
tion (3).

AM. 28/10—G
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Now let us fold in the modified cohesive force term
with the applied loading and lattice constraint terms
to obtain the net crack-tip force function F, in equa-
tion (7). The procedure is the same as that used in
constructing Fig. 3. Fig. 6a shows composite plots of
the restoring force terms due to the bond and the
constraining lattice, and Fig. 6b the corresponding net
crack-tip force function. (The curves relating to intrin-
sic bond rupture, included for the sake of comparison,
are plotted for the same lattice conditions as pre-
viously.) The stable equilibria corresponding to con-
figurations I and II now relate explicitly to the
unreacted and reacted (adsorption) states of the bond
respectively; the unstable configuration I* accord-
ingly relates to the activated complex state of the
crack-tip reaction AA + BB— 2AB. Recalling that
the origin of the F,(u,) curve is displaced an amount
P(1 + n/§) along the ordinate, and that there is a
range of loads P_ < P < P, (not indicated in
Fig. 6b) within which the crack is effectively trapped
by the structure, it is apparent that the general effect
of the chemical interaction is to reduce the applied
forces necessary to drive the crack. Insofar as propa-
gation under conditions of mechanical equilibrium is
concerned, both the critical loads for advance, P,

(b)

AA + BB

2uc

2AB

Fig. 5. Potential energy and force functions for bonds sub-

jected to reaction in Fig. 4. Heavy curves represent mini-

mum energy state for any given BB bond displacement —

note crossover from AA + BB curve to 2AB curve at criti-

cal displacement (activated complex). Note also the reduc-

tion in bond-rupture energy (area under f,(u;) curve) result-
ing from the interaction.
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Fig. 6. Graphical construction showing (a) restoring force,
and (b) net bond-rupture force as function of crack-tip dis-
placement. Curves are representations of equation (7) for
extrinsic bond rupture. Effect of chemical interaction is to
enhance the forces driving the bond-rupture process.

and retreat (i.e. spontaneous desorption of the AA
molecule), P_, are lowered (P, only slightly, for the
particular case illustrated). With regard to thermally
activated propagation, the pertinent result is that the
energy barrier [see equation (8)] to forward motion,
AU ,, is lowered, and to backward motion, AU _, is
raised: the load at the quiescent point, i.e. corre-
sponding to the thermal equilibrium condition
AU, = AU_, is therefore also lowered.

It is of some interest to examine the effect of the
“strength” of the chemical interaction, as measured by

Net crack-tip force, F,
[e]

Fig. 7. Net bond-rupture force for crack-tip displacement,

showing effect of “strength” of chemical interaction on lat-

tice trapping limits. Curves a,b,c,d represent increasing
values of 2U g — Uga.
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the quantity 2U,p — U, in Fig. 5a [i.e. the difference
between the intrinsic and extrinsic bond-rupture
energies in equations (3) and (9)], on the crack-tip
force characteristics. The plots in Fig. 7 are for differ-
ent values of this quantity, starting at zero for curve a
(intrinsic) and increasing through the sequence b, c, d.
For the particular load P and crack size n represented
in the figure, the crack in system a would be subject
to spontaneous retreat, in b to activated retreat, in ¢
to activated advance, and in d to spontaneous
advance. If the interaction is weak, as in system b, the
critical load P, required to extend the crack at mech-
anical equilibrium may differ imperceptibly from that
which obtains in intrinsic bond rupture (note near-
coincident minima in curves a and b), even though the
corresponding load P_ for retreat is substantially
reduced. If the interaction is strong, as in system d,
not only does P, now diminish, but P_ tends to
become negative (cf. maximum in curve with intercept
on ordinate); in this extreme the interaction is irre-
versible (desorption of the molecule AA apparently
requiring the bond force to be applied compressively).
Overall, chemistry acts to displace the activated
complex configuration toward smaller atom separ-
ations at the crack tip, with consequent reduction in
the load at which true Griffith equilibrium maintains.

3. DISCUSSION

We have developed a quasi-one-dimensional model,
based on a linear atomic chain construction, for
examining the effect of material discreteness on brittle
fracture. In particular, noting that for a given loaded
system the crack-tip displacement uniquely deter-
mines the crack driving force [equation (7)], we have
been able to introduce chemistry into the problem by
regarding the separating crack-tip bond as an active
diatomic molecule. Although clearly oversimplistic in
relation to real brittle fracture systems, our specific
model does show several characteristics which would
appear to be quite general. The implications arising
from some of these characteristics are worth examin-
ing from the standpoint of the fracture-mechanics/
fracture-mechanism dichotomy.

First, we may note that our analysis has been car-
ried out entirely in terms of atomic structural par-
ameters. In the limit of n— 00, by — 0, where b, is the
interatomic spacing, the solutions should reduce to
their more conventional continuum counterparts.
This limit is readily evaluated, in the approximation
of linear elasticity, if it is required that the crack
length ¢ = nb, and the elastic constants of the struc-
ture retain sensible (non-zero, non-infinite) values [7]:
the equilibrium condition, corresponding to F, =0
and (0U,/dc) =0, becomes P(c + bo§) = bo(BU,)*.
Defining a ‘surface energy density’ (per unit length of
crack), 2y = U,/by, this expression reduces to the
standard continuum relation for crack equilibrium,
G = 2y, if we also define a corresponding ‘crack
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extension force’ G = P*(c + bo$)?/Bb3 (with Bbd con-
stant, averaged over all elements in the structure): this
last relation is indeed identical in form to that
obtained for the well-known, double-cantilever test
beam configuration [17].

The question that may now be asked is, what does
the linear parameter G measure in a test on a discrete
structure such as in Figs. 1 and 4? Returning to equa-
tion (7), we may note that the term P(l + n/§) in the
crack-tip force function is independent of u, — it con-
tains no information at all about events at the crack
tip. Thus in the constructions of Figs. 3b and 6b the
intercept of the force curve on the ordinate is effec-
tively determined by the structure-insensitive quantiy
G. The shape of the force curve is determined pri-
marly, of course, by the functions which define the
crack-tip response, i.e. f(u,) or Uy(u,). The underlying
basis of the lattice trapping phenomenon is therefore
expected to reflect in the surface energy term y.
Accordingly, measurements of critical loads for crack
extension under different equilibrium conditions can
provide varied information on the effective value of
this surface energy. At mechanical eqilibrium, the criti-
cal load measures the upper trapping limit, giving
G, = 2y, ; at thermal equilibrium, it is the configur-
ation at which forward and backward fluctuations are
equally probable which pertains, so that G, = 2y,,
where 2y, = Uj/by is the truly reversible surface
energy in the classical Griffith sense. In this descrip-
tion, y_ < 7o <y, always (see Fig. 3b). (In more
practical fracture mechanics parlance, y, is a measure
of ‘toughness’, Kic: 7o is a measure of the fatigue limit
in so-called ‘stress corrosion cracking’, Kiscc.) More
detailed discussions of the relations between fracture
criteria at the macroscopic and microscopic levels,
including the functional form of the crack velocity
v(K) within the trapping range, are given else-
where [5, 8].

Next, let us consider the implications of the analy-
sis concerning the role of structure on the fracture
response. We have already alluded, via Fig. 3, to a
possible elimination of intrinsic lattice trapping for
structures  with  sufficiently large values of
B/a. [S, 6, 15]. (Incidentally, a careful examination of
Figs. 3 and 6 indicates that a crack system which
shows no intrinsic lattice trapping may still show
strong extrinsic trapping.) Again, in our discussion of
equation (7) in section 2.1 it was pointed out that the
constraint of the ‘lattice’ on the separating crack-tip
bond may be considered in terms of an equivalent
continuous matrix of stiffness (§ — 1)a. This stiffness
represents an averaged value over all elements in the
system, so essentially the same result would obtain if
the linear matrix were to be replaced by a two- or
three-dimensional continuum of identical elastic re-
sponse. In other words. there is nothing in the analy-
sis to suggest that plots of the type shown in Figs. 3
and 6 might not be equally applicable to an active
bond at, say, a kinked crack front in a crystal clea-
vage configuration. General lattice trapping charac-
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teristics have in fact been observed in two- and three-
dimensional crack models [ 18, 19]. Further, it may be
argued in the same vein that the assumptions of per-
fect linearity and atomic periodicty in the lattice (im-
plicit in the derivation of equation (7)) are unlikely to
be highly restrictive. Nonlinearity in the lattice ele-
ments should be significant only in the immediate
vicinity of the crack-tip bond, and is therefore not
expected to reflect strongly in the averaged stiffness
which determines the overall lattice response; nonper-
iodicity, likewise, may be suitably averaged in the lat-
tice term by using macroscopically-determined elastic
constants. Such factors, of course, must be given
explicit consideration in the specification of the func-
tion fy(u,) for the crack-tip bond: we have indicated
earlier (section 2.1) that nonlinearity in this function is
a necessary input into any physically realistic theory
of brittle fracture; structural nonperiodicity, e.g.
glasses, may be simply accommodated, in principle,
by means of an appropriate distribution of such func-
tions over the crack plane.

Similar conclusions may be drawn concerning the
detailed nature of chemically-induced bond rupture at
the crack tip. Our analysis based on the classical reac-
tion between two diatomic molecules ignores several
possible complications. First, the chemical bond at
the crack tip will surely be influenced by the sur-
rounding structure. Then, once reaction has occurred,
the bond structure on the new free surface may be
subject to substantial rearrangement. Again, the reac-
tion may not proceed in a single step, but rather in a
series of substeps along a complex reaction path.
Nevertheless, none of these complications detracts
from the scheme of Fig. 6 as a means for describing
the basic mechanisms of bond weakening: it is only
the exact form of the cohesive function f(u,) which
varies. For instance, if the molecule AA in Fig. 4 were
to dissociate prior to reacting with bond BB, e.g. by
virtue of a precursor state of physisorption on the
adjacent crack walls, we might anticipate the curves
in Fig. 5a to remain a reasonable representation of
the rupture event, but with that labelled 2AB dis-
placed upward in accordance with Us, — 0. In the
construction of Fig. 7 the effect of systematically
reducing U, relative to 2U,p is simply to displace
the curves through the sequence bh— c¢—d. The
greatly enhanced crack growth observed in steels
when gaseous hydrogen is introduced into the en-
vironment in atomic rather than molecular form [20]
may be a manifestation of this type of weakening
phenomenon.

Finally, it needs to be re-emphasised that the use-
fulness of the atomic models described in this study
rests with the validity of the underlying sharp-crack
concept. We mentioned in the Introduction the exist-
ence of evidence supporting this concept in materials
which fail by a highly brittle mode, notably ceramics.
It was also mentioned that the concept might logi-
cally be extended to metallic structures, notwithstand-
ing the acknowledged fact that extensive flow pro-



1414 FULLER et al.:
cesses are capable of absorbing most of the work to
fracture. Central to this line of thinking is the con-
dition that the flow process cause no blunting of the
crack tip at the atomic level — indeed, it can be argued
that the requirements for such blunting are stringent,
and are likely to be met as the exception rather than
the rule [21]. The processes of plasticity then enter
the description via the mechanics, not the mechan-
isms, of fracture. Thus, specific models proposed by
Thomson, Hart and Weertman envisage a ‘shielding’
role for the plastic zone, in which the actual stress
field experienced at the tip is substantially reduced
below that one might estimate from applied-load and
crack-geometry considerations [11-14]. This leaves
the fundamental processes which actually control
crack growth to be explained in terms of atomistic
models. It is in this context that the simplistic ideas
expressed in Figs. 1 and 4 might ultimately be
expected to have a wider application, e.g. in the
complex area of metal embrittlement by hydrogen or
liquid metal environments.
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