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An indentation-strength formulation is presented for nontransforming ceramic materials that
show an increasing toughness with crack length (T curve, or R curve) due to the restraining
action of interfacial bridges behind the crack tip. By assuming a stress-separation function for
the bridges a microstructure-associated stress intensity factor is determined for the penny-like
indentation cracks. This stress intensity factor opposes that associated with the applied
loading, thereby contributing to an apparent toughening of the material, i.e., the measured
toughness in excess of that associated with the intrinsic cohesion of the grain boundaries
(intergranular fracture). The incorporation of this additional factor into conventional
indentation fracture mechanics allows the strengths of specimens with Vickers flaws to be
calculated as a function of indentation load. The resulting formulation is used to analyze
earlier indentation-strength data on a range of alumina, glass—ceramic, and barium titanate
materials. Numerical deconvolution of these data determines the appropriate T curves. A
feature of the analysis is that materials with pronounced T curves have the qualities of flaw
tolerance and enhanced crack stability. It is suggested that the indentation-strength
methodology, in combination with the bridging model, can be a powerful tool for the
development and characterization of structural ceramics, particularly with regard to grain

boundary structure.

I. INTRODUCTION

Recent studies have shown that many polycrystal-
line, non-phase-transforming ceramics exhibit an in-
creasing resistance to crack propagation with crack
length.'"® At small flaw sizes, comparable to the scale of
the microstructure, the toughness 7'is an intrinsic quan-
tity representative of the weakest fracture path. At large
flaw sizes the toughness tends to a higher, steady-state
value representative of the cumulative crack/micro-
structure interactions in the polycrystal. The progres-
sive transition from the low-to-high toughness limits
during crack extension is described as the T curve. [The
concepts of T curve and R curve are equivalent.” In the
former the equilibrium condition is obtained by equat-
ing the net stress intensity factor K, characterizing the
net applied load on the crack, to the toughness 7" (alter-
natively designated K- in some of the earlier
literature) characterizing critical crack resistance
forces. In the latter, the mechanical energy release rate
G, derived from the work done by the applied loading
during crack extension, is equated to the energy neces-
sary to create the fracture surfaces R. ]
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Perhaps the most comprehensive studies of this T-
curve behavior have been made using a controlled flaw
technique,'™ in which the strengths of specimens con-
taining indentations are measured as a function of iden-
tation load. It was found that, for large flaws, the
strengths tend to an “ideal” — ! power law dependence
of strength on indentation load, indicative of a nonvary-
ing toughness. At small flaw sizes, however, the
strengths decrease markedly from this ideal behavior,
tending instead to a load-independent plateau. Signifi-
cantly, in a group of polycrystalline alumina materials it
was found that the strengths at large flaw sizes were all
greater than those of single-crystal sapphire, whereas
the reverse tended to be true at small flaw sizes.! Taken
with the observation that the fracture in these aluminas
is intergranular, these results suggest that the grain
boundaries are paths of weakness but that there is some
mechanism operating that more than compensates for
this intrinsic weakness as the flaw size increases. More-
over, the strength-load responses of the polycrystalline
materials themselves, even those with similar grain
sizes, tended to cross each other.! It would appear that
the nature of the grain boundary, as well as the grain
size, influences the fracture behavior.

Two other sets of experiments provide vital clues as
to the mechanism of crack/microstructure interaction

© 1987 Materials Research Society 345



underlying the T-curve behavior. In the first set, Kne-
hans and Steinbrech® propagated large cracks in alu-
mina using the single-edge-notched beam geometry.
They observed strongly rising T-curves as cracks propa-
gated from the tip of the notch. However, when interfa-
cial material was removed from behind the crack tip by
careful sawing, the toughness did not continue up the T
curve but reverted to its original level, implying that the
critical mechanism must be operating in the “wake” of
the crack tip. In the second set of experiments, Swanson
et al.® observed crack propagation in alumina using both
indented-disk and tapered-cantilever beam specimens.
Active grain-localized “bridges” were observed at the
primary crack interface, over a “zone length” of milli-
meter scale. The implication here is that interfacial
bridging ligaments behind the tip are providing a re-
straining influence on crack extension. The reversion to
the base of the T curve in the experiments of Knehans
and Steinbrech may be interpreted in terms of the remo-
val of these restraining ligaments. ,

Mai and Lawn'® developed a fracture mechanics
model for the propagation of ligamentary bridged
cracks, incorporating parameters characterizing the in-
terbridge spacing, the intrinsic intergranular toughness,
and the force-extension “law” for the bridges. They ap-
plied the model to the propagation of full-scale cracks
propagating under double cantilever loading and there-
by demonstrated consistency with the measured T-
curve response in a polycrystalline alumina.

Here we shall apply the Mai—-Lawn bridging model
to the mechanics of the indentation-strength test. It is
appropriate to do this for two reasons. First, indentation
cracks are strongly representative of the small “natural”
flaws that control the strengths of ceramic materials in
service.! Second, and most important, the indentation
methodology will be seen to be ideally suited to quanti-
tative analysis of the T-curve function. For this purpose,
recourse will be made to several earlier sources of inden-
tation-strength data, covering a broad spectrum of ce-
ramic materials."**"! The consequent manner in which
the indentation-strength test highlights one of the most
important manifestations of T-curve behavior, namely
flaw tolerance, will emerge as a uniquely appealing fea-
ture of the approach. The potential for using the atten-
dant parametric evaluations in the T-curve analysis as a
tool for investigating the role of chemical composition
and processing variables as determinants of toughness
properties is indicated.

Il. INTERFACIAL CRACK RESTRAINT MODEL

An earlier fracture mechanics model'® for straight-
fronted cracks restrained by interfacial bridging liga-
ments is reproduced here in modified form, appropriate
to penny-like indentation cracks.

A. Equilibrium crack propagation

A fracture system is in equilibrium when the forces
driving the crack extension are equal to the forces resist-
ing this extension. Equilibria may be stable or unstable,
depending on the crack-length dependence of these
forces.® Here we shall characterize the driving forces by
stress intensity factors K(c¢) and the fracture resistance
by toughness 7T'(c), where c¢ is the crack size. We may
consider separately the stress intensity factor arising
from the applied loading K,, which is directly moni-
tored, from that associated with any internal forces in-
trinsic to the microstructure K, such as the ligamentary
bridging forces we seek to include here. We may then
conveniently regard the fracture resistance of the mate-
rial as the sum of an intrinsic interfacial toughness of the
material 7}, and the internal K; terms.® Hence our con-
dition for equilibrium may be written

K,(¢) = T(e) = T, — TK, (), (1)

where we have summed over all internal contributions.
We emphasize that T} is strictly independent of crack
length. The quantity 7'(c) is the effective toughness
function, or T curve, for the material. To obtain a rising
T curve, i.e., an increase in toughness with crack length,
the sum over the K, (¢) terms must be either positive
decreasing or negative increasing. In terms of Eq. (1)
the condition for stability is that dK, /dc <dT /dc and
for instability dK, /dc > dT /dc.® We see then that a ris-
ing T curve, where dT /dc>0, will lead to increased sta-
bilization of the crack system.

B. Microstructure-associated stress intensity
factor

We seek now to incorporate the effect of restraining
ligaments behind the growing crack tip into a micro-
structure-associated stress intensity factor, K, = X, K.
In the context of indentation flaws we shall develop the
analysis for cracks of half-penny geometry.

A schematic model of the proposed system is shown
in Fig. 1. The interfacial bridging ligaments are repre-
sented as an array of force centers, F(r), projected onto
the crack plane. Here c is the radius of the crack front
and d is the characteristic separation of the centers. At
very small cracks sizes, ¢ <d, the front encounters no
impedance. As the front expands, bridges are activated
in the region d<r<c. These bridges remain active until,
at some critical crack size ¢* (>d), ligamentary rupture
occurs at those sites most distant behind the front.
Thereafter a steady-state annular zone of width ¢* — d
simply expands outward with the growing crack.

The qualitative features of the crack response ob-
served by Swanson et al.® would appear to be well de-
scribed by the above configuration. Enhanced crack sta-
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FIG. 1. Schematic diagram of a half-penny, surface crack propagating
through a material with bridging ligaments impeding the crack mo-
tion. Here d is the mean ligament spacing, c is the crack radius, and ris
the radial coordinate from the penny origin; @ denotes the active liga-
ment sits and © denotes potential ligament sites.

!

bility arises from the increasing interfacial restraint as
more and more bridging sites are activated by the ex-
panding crack front (the number of active bridges will
increase approximately quadratically with the crack ra-
dius). The discontinuous nature of the crack growth
follows from the discreteness in the spatial distribution
of the closure forces in the crack plane. Thus we imagine
the crack to become trapped at first encounter with the
barriers. If these barriers were to be sufficiently large the
crack front could be “trapped” such that, at an in-
creased level of applied stress, the next increment of ad-
vance would occur unstably to the second set of trap-
ping sites. Further increases in applied stress would lead
to repetitions of this trapping process over successive
barriers, the jump frequency increasing as the expand-
ing crack front encompasses more sites. There must ac-
cordingly be a smoothing out of the discreteness in the
distribution of interfacial restraints as the crack grows
until, at very large crack sizes, the distribution may be
taken as continuous. With regard to the steady-state
zone width (¢* — d) referred to above, our own obser-
vations and those of Swanson et a/.®'? indicate that, for a
given material, there is a characteristic distance behind
the crack tip that contains apparently intact bridges.
In principle, we should be able to write down an
appropriate stress intensity factor for any given distribu-
tion of discrete restraining forces of the kind depicted in
Fig. 1. However, an exact summation becomes intracta-
ble as the number of active restraining elements be-
comes large. To overcome this difficulty we approxi-
mate the summation over the discrete force elements
F(r) by an integration over continuously distributed
stresses o (7) ~F(r)/d > We plot these stresses for three
crack configurations in Fig. 2. These stresses have zero
value in the region » <d, reflecting the necessary ab-
sence of restraint prior to the intersection of the crack
front with the first bridging sites. They have nonzero

d<c<c* c=c* c>c*

RESTRAINING STRESS, o (1)

CRACK-PLANE COORDINATE, r

FIG. 2. Stress distribution applied by the restraining ligaments over
the crack plane as a function of radial distance from the center of the
crack. Note that the stress is zero for » < d and reaches a steady-state
distribution for ¢>c*.

value in the region d < r < ¢ up to the crack size at which
ligamentary rupture occurs (d<c<c*) and thereafter in
the regiond + ¢ — ¢* < r < ¢, where a stready-state con-
figuration is obtained (c¢>c¢*). This approximation is
tantamount to ignoring all but the first of the discontin-
uous jumps in the observed crack evolution. We might
consider such a sacrifice of part of the physical reality to
be justifiable in those cases where the critical crack con-
figuration encompasses many bridging sites, as perhaps
in a typical strength test.

The problem may now be formalized by writing
down a microstructure-associated stress intensity factor
in terms of the familiar Green’s function solution for
penny-like cracks'®:

K#:O (c<d), (2a)
B Y ¢ dr
K‘u— —(Cl/z)La(r)rm (dgcgc*)’
(2b)
_ Y i dr
Ku - (CI/Z)L+C_C*U(r)r (cz - rz)l/z (e>c®),
(2¢)

where ¢ is numerical crack geometry term. At this point
another major difficulty becomes apparent. We have no
basis, either theoretical or experimental, for specifying a
priori what form the closure stress function o(#) must
take. On the other hand, we do have some feeling from
the observations of Swanson et al., albeit limited, as to
the functional form o(u), where u is the crack opening
displacement. Further, it is o(#) rather than o(#) that
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is the more fundamental bridging quantity and that is
more amenable to independent specification. Thus, giv-
en a knowledge of the crack profile, we should be able to
replace 7 by u as the integration variable in Eq. (2) and
thereby proceed one step closer to a solution.
However, even this step involves some uncertainty,
as the crack profile itself is bound to be strongly in-
fluenced by the distribution of surface tractions, i.e.,
u(r) strictly depends on o(r) (as well as on the applied
loading configuration), which we have just acknowl-
edged as an unknown. A rigorous treatment of this
problem involves the solution of two coupled nonlinear
integral equations, for which no analytical solutions are
available.'* We thus introduce a simplification by neg-
lecting any effect the tractions might have on the shape
of the crack profile, while taking account of these trac-
tions through their influence on the net driving force
K=K, + K, from Eq. (1), in determining the magni-
tude of the crack opening displacements. Accordingly,
we choose Sneddon’s solution'” for the near-field dis-
placements of an equilibrium crack, i.e., K = T,

u(re) = (WToy/Ec'’?) (> — )2, (3)

where E is the Young’s modulus. Substitution of Eq. (3)
into Eq. (2) then gives

K,=0 (c<d), (4a)

E u(d,c)
K, = _(_)f o(u)du (d<c<c*), (4b)
To/Jo

K, = — (£>f o(u)du (c>c*). (4c)
Ty /o
We note that u* = u(d,c*) is independent of ¢ so K,
cuts off at c>c*.

Let us note here that our choice of the Sneddon
profile, Eq. (3) leads us to an especially simple solution
for K, in Eq. (4). In particular, we note that this term is
conveniently expressible as an integral of the surface
closure stress as a function of the crack opening dis-
placement, i.e., a work of separation term. This simple
solution obtains only with the Sneddon profile. It might
be argued that a Dugdale-type profile'® is more appro-
priate, but it can be shown that the fracture mechanics
are not too sensitive to the actual profile chosen.'” Our
main objective here is to emphasize the physical vari-
ables involved. Thus by sacrificing self-consistency in
our solutions, we have obtained simple working equa-
tions for evaluating the microstructure-associated stress
intensity factor. We have only to specify the stress-sepa-
ration function o(u).

C. Stress-separation function for interfacial
bridges

The function o (u) is determined completely by the
micromechanics of the ligamentary rupture process. We
have indicated that we have limited information on

what form this function should take. Generally, o(u)
must rise from zero at # = 0 to some maximum and then
decrease to zero again at some characteristic rupture
separation u*. The observations of crack propagation in
alumina by Swanson ef a/. suggest that it is the decreas-
ing part of this stress-separation response that is the
most dominant in the polycrystalline ceramics of inter-
est here.® The stable crack propagation observed by
those authors has much in common with the interface
separation processes in concrete materials that are often
described by tail-dominated stress-separation functions.
The stress-separation function chosen is'’

o(u) =0*(1 —u/u*)" (0<u<u*), (5)
where o* and u* are limiting values of the stress and
separation, respectively, and m is an exponent. We con-
sider three values of m: m = 0 is the simplest case of a
uniformly distributed stress acting over the annular ac-
tivity zone; m = 1 corresponds to simple, constant-fric-
tion pullout of the interlocking ligamentary grains;
m = 2 is the value adopted by the concrete community
(equivalent to a decreasing frictional resistance with in-
creasing pullout). As we shall see, the choice of m will
not be too critical in our ability to describe observed
strength data. Note that the representation of the stress-
separation function by Eq. (5) is an infinite modulus
approximation in that it totally neglects the rising part
of the o(u) response.

Equation (5) may now be substituted into Eq. (4)
to yield, after integration,

K, =0 (c<d), (6a)

K,=— (T, —Ty)(1—{1—[c*(c"—d?)/
c(e** —d*)]'?}m 1Y) (d<c<c*),  (6b)

K,=—(T, —Ty (c>c*), (6¢)

where we have eliminated the stress-separation param-
eters o* and u* in favor of those characterizing steady-
state crack propagation, c* and 7' :

c* = 2(Eu*/yYTo) {1 + [1 + 4(Tod V2/Eu*)*1'?}
(7)

and
T, =T,+ Eo*u*/(m + 1)T,. (8)

These latter parameters are more easily incorporated
into the strength analysis to follow.

A useful quantity is the work necessary to rupture
an individual ligament. This work is a composite mea-
sure of the maximum sustainable stress and maximum
range of the stress-extension function of Eq. (5) and is
given by the area under the stress-separation curve
o(u). We may express this area as

*

r,= fu o(u)du =
0

o*u*

A (92)
(m+1)
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It is useful to compare this quantity with the intrinsic
interfacial energy®

Ty=T2/2E. (9b)

The I' terms in Eq. (9) are related, through Eq. (8), by
the ratio

T,/To=2(T, —Ty)/T,, (10)

which may conveniently be regarded as a toughening
index.

D. Strength-indentation load relations

We are now in the position to consider the mechan-
ics of a test specimen containing an indentation crack
produced at load P and subsequently subjected to an
applied stress o, . To obtain the ““inert strength” o, , we
need to deterinine the equilibrium instability configura-
tion at which the crack grows without limit.

In indentation crack systems the stress intensity
factor associated with the residual contact stresses K,
augments the stress intensity factor associated with the
applied loading K, effectively giving rise to a net applied
stress intensity factor K /.'®!° Equation (1) becomes

K, =K, +K, =T()
=go,c'> +yP/? =T, —K,(c), (11)

where y measures the intensity of the residual field. We
note that K, is inverse in crack size and hence will
further stabilize the fracture evolution.'® The indenta-
tion load determines the initial crack size at o, = 0, but
because of the stabilization in the growth we should not
necessarily expect this initial size to be an important
factor in the fracture mechanics. Our problem then is to
combine Egs. (6) and (11) and invoke the instability
condition dK |, /dc>dT /dc to determine the strength as
a function of indentation load.

Unfortunately, it is not possible to obtain closed
form solutions to this problem. Limiting solutions can
be obtained analytically, however, and we consider
these first.

(i) Small cracks (low P). In the region ¢ <d we
revert to the ideal case of zero microstructural interac-
tion, such that Eq. (6a) applies. In this region it can be
readily shown that the equilibrium function o, (¢) ob-
tained by rearranging Eq. (11) passes through a maxi-
mum, up to which point the crack undergoes stable
growth.'® This maximum therefore defines the instabil-
ity point do,/dc =0 (equivalent to the condition
dK | /dc =dT /dc = 0 here):

0°, =3T3 /43y (yP)'>. (12)
The region of validity of this solution is indicated as
region I in Fig. 3.

(i) Large cracks (high P). In the region ¢>c*, Eq.
(6¢) applies and we have maximum microstructural in-

teraction. The procedure to a solution is entirely the
same as in the previous case, except that now 7 re-
places 7, in Eq. (12). Thus

0_: — 3T£Z3/44/3¢(XP)1/3.

This solution applies in region III in Fig. 3.

It is for intermediate cracks, region I in Fig. 3, that
analytical solutions are difficult to obtain. Here numeri-
cal procedures will be required, but the route is never-
theless the same as before; determine o, (¢) from Eq.
(11) in conjuction with Eq. (6b) and apply the instabil-
ity condition, taking account of the increased stabiliza-
tion arising from the K,, term. To proceed this way we
must first determine the values of the parameters in Egs.
(6) and (11). We address this problem in the next sec-
tion.

(13)

Ill. DERIVATION OF T CURVE FROM
INDENTATION STRENGTH DATA

A. Crack geometry and elastic/plastic contact
parameters

Our first step towards a complete parametric eva-
luation of the o, (P) data is to seek a priori specifica-
tions of the dimensionless quantities ¥ and y in Eq.
(11). The parameter ¢ is taken to be material indepen-
dent, since it is strictly a crack geometry term. The pa-
rameter y does depend on material properties, however,
relating as it does competing elastic and plastic pro-
cesses in the indentation contact.'®> We note that these
parameters do not appear in the microstructural term
K, in Eq. (6), so ideally we can “calibrate” them from

m

STRENGTH, ¢
_..‘
1
—

INDENTATION LOAD, P

FIG. 3. Schematic strength versus indentation load plot incorporating
the influence of bridging ligaments into the crack propagation re-
sponse (logarithmic coordinates). The solid line represents the gen-
eral solution [Eqgs. (6) and (11)]. The dashed lines represent asymp-
totic solutions obtained analytically for small cracks [region I, Eq.
(12)] and large cracks [region III, Eq. (13)].
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tests on materials that do not exhibit T-curve behavior.
The details of such calibrations are given in the Appen-
dix. The values we use are ¢y = 1.24 and y = 0.0040 (E /
H)'?, where H is the hardness.

B. Bounding parameters for the regression
procedure

We have indicated that solutions for region II of the
strength-load response of Fig. 3 must be obtained nu-
merically. Here we shall outline the regression proce-
dure used to deconvolute the T curve for a given set of
o,, (P) data.

To establish reasonable first approximations for a
search/regression procedure, we note two experimental
observations. The first is from the indentation/strength
data of Cook et al.' In a number of materials the o,, (P)
data tended strongly to the asymptotic limit of region
III at large indentation loads (Fig. 3), reflecting the
upper, steady-state toughness 7, [see Eq. (13)]. No
analogous transition corresponding to 7|, -controlled
strengths in region I was observed: at low indentation
loads the strength data were truncated by failures from
natural flaws. Notwithstanding this latter restriction,
we may use Eqgs. (12) and (13) (with calibrated values
of ¢ and y from Sec. III A) to set upper bounds to T,
and lower bounds to 7, from strength data at the ex-
tremes of the indentation load range. We expect from
the observations of Cook et al. that the lower bound
estimate of 7' probably lies closer to the true value
than the upper bound estimate to 7,

The second experimental observation is from the
crack propagation work of Swanson ez al.,® who estimat-
ed the average distance between bridging sites at 2-5
grain diameters. We accordingly take the lower bound
estimate for the interligament spacing d at 1 grain diam-
eter. Similar bounding estimates for ¢* are more diffi-
cult, although the condition c* > d must be satisfied.

There is one further parameter we have to specify,
and that is the exponent of the ligament stress-extension
function m. We have alluded to the fact that the obser-
vations of Swanson ef al. indicate that a stabilizing, tail-
dominated stress-separation function should be appro-
priate, with m>11in Eq. (5).

C. Regression procedure

With the first approximations thus determined we
search for the set of parameters for each set of o, (P)
data. The scheme adopted to do this is as follows.

(1) The T curve is set from Egs. (1) and (6) and
the equilibrium o, (¢) response is calculated from Eq.
(11) at each indentation load for which there are mea-
sured strength data.

(2) The predicted strength at each indentation load
is determined numerically from the instability require-

ment do, /dc =0 (with the proviso that if more than
one maximum in the o, (¢) function exists, it is the
greater that determines the strength—see Sec. IV).

(3) The predicted strengths are compared with the
corresponding measured strengths and the mean vari-
ance thereby calculated for a given set of T-curve pa-
rameters.

(4) The T-curve parameters are incremented and
the calculation of the variance repeated, using a matrix
search routine. The increments in the search variables
were 0.05 MPa m'!/? for the toughness parameters T},
and T, and 5 pum for the dimension parameters
d and c*.

(5) The set of T-curve parameters yielding the min-
imum residual variance is selected.

IV. RESULTS

The materials analyzed in this study are listed in
Table I, along with their Young’s modulus, hardness,
grain size, and minor phase percentage. Previously pub-
lished"**!! indentation-strength data for these materi-
als was used for the T-curve deconvolutions. [Some
data were removed from the original ,, (P) data sets at
large indentation loads, where the influence of second-
ary lateral cracking was suspected to have significantly
decreased the magnitude of the residual stress intensity
factor.?°] The resultant parameter evaluations are given
in Table II.

Our first exercise was to select a fixed value of the
exponent m for the T-curve evaluations. Accordingly a
preliminary analysis of the o,, (P) data for two materi-
als displaying particularly strong T-curve influences in
their strength responses, namely the VI1 and VI2 alumi-
nas, was carried out. Figure 4 shows the minimum resid-

10 T T
o
o [ ]
s 8 e V|1 |
z o VI2
Q
<
S 6 1
8 \\. ————o o—1
z s] g—0 O
<
w — —
s 4
-
<C
o)
=}
n 2 T
i
o
0 ! ] 1 |
0] 1 2 3 4 5

BRIDGING FUNCTION EXPONENT, m

FIG. 4. The residual mean deviation between fitted and measured
indentation-strength functions versus bridging function exponent m
for the VI aluminas. Note the relative insensitivity for m>1.
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ual mean deviation as a function of m for these materi-
als. The deviation for both materials is greatest at m = 0
but thereafter at m>1 is insensitive to the choice of ex-
ponent. The value somewhat arbitrarily chosen for this
study was m = 2 in accord with that adopted in the con-
crete literature. '

To illustrate the procedure and at the same time to
gain valuable insight into the crack evolution to failure
let us focus now on just two of the listed alumina materi-
als in Table I, VI2 and AD96. Figure 5 shows the
strength versus indentation load data for these materi-
als.! The data points in this figure represent means and
standard deviations of approximately ten strength tests
at each indentation load. The solid lines are the best fits
[Egs. (1), (6),and (11)] to the data. The dashed lines
represent T- and 7' -controlled limits [Eqgs. (12) and
(13)]. As can be seen, the fitted curves smoothly inter-
sect the 7' -controlled limit at large indentation loads,
this tendency being greater for the AD96 material. This
smooth connection is a reflection of our choice of m
above; for m < 2 the v,,, (P) curve intersects the T lim-
it with a discontinuity in slope. At intermediate indenta-
tion loads the strengths tend to a plateau level, more
strongly for the VI2 material. In line with our conten-
tion that this plateau is associated with a strong micros-
tructural influence we might thus expect the VI2 mate-
rial to exhibit a more pronounced T curve. The larger
separation of the T,- and T, -controlled limits for the
V12 material in Fig. 6 supports this contention. Finally,
at small indentation loads the strengths cut off abruptly
at the T,-controlled limit, corresponding to the case

TABLE I. Materials analyzed in this study.
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(MPa)

100 | (a) A|203 (VI2)

m
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STRENGTH, ¢
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100

1 i ! I |

102 10" 1 10 102 100 10°

INDENTATION LOAD, P (N)

FIG. 5. Indentation-strength data fits for the VI2 and AD96 alumi-
nas. Note the relatively pronounced plateau for the VI2 material, indi-
cative of a strong T-curve influence. Oblique dashed lines are T;,- and
T, -controlled limiting solutions.

Young’s modulus Hardness Grain size Minor phase
Material E /GPa H /GPa pum % Ref.
Alumina VIl 393 19.1 20 0.1 1
VI2 393 19.0 41 0.1 1
AD999 386 20.1 3 0.1 1
AD96 303 14.1 11 4 e
AD90 276 13.0 4 10 1
F99 400 16.1 11 1 1
HW 206 11.7 28 0.3 1
Sapphire 425 21.8 e e 1
Glass— SL1 87.9 4.4 1.2 33 1,3
ceramics SL2 87.9 4.3 1.9 22 1,3
SL3 87.9 4.8 23 20 1,3
Macor 64.1 2.0 17 50 4
Pyroceram 108 8.4 1 e 4
Barium CH(cub.) 123 5.9 7 1 11
titanate CH(tet.) 123 5.9 7 1 11
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where the crack intersects no bridges prior to unlimited
instability.

Figures 6 and 7 show the corresponding equilibri-
um o, (¢) and T'(c) functions that underlie the curve
fits in Fig. 5. The o, (¢) responses are plotted for several
indentation loads, embracing the data range covered in
the indentation-strength experiments (e.g., Fig. 5). The
most distinctive feature of these curves is that at low
indentation loads, where the initial crack size is some-
what smaller than the first barrier distance d, there are
two maxima, most notably in the VI2 material. The first
maximum, at ¢ <d, is a pure manifestation of the crack
stabilization due to the residual contact stress term [ Eq.
(11)].' The second maximum, at ¢>d, results from
the additional, abrupt stabilization associated with the
microstructural closure forces. Of the two maxima, it is
the greater that determines the strength. Thus at very
low P (corresponding to region I in Fig. 3) the first
maximum wins, and the instability takes the crack sys-
tem to failure without limit (e.g., the P = 0.1 N curves
for both the VI2 material in Fig. 6 and the AD96 materi-
alin Fig. 7). At intermediate P (region IT in Fig. 3) the
second maximum becomes dominant, in which case the
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FIG. 6. (a) Applied stress versus equilibrium crack length at different

indentation loads and (b) corresponding T curve, for VI2 alumina, as
derived from the indentation-strength data in Fig. 5.
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FIG. 7. (a) Applied stress, versus equilibrium crack length and (b)
corresponding T curve, for AD96 alumina.

crack arrests before failure can ensue (e.g.,the P=1N
curves in Figs. 6 and 7). Note that the second maximum
for the VI2 alumina occurs at =~ 100 #m, consistent with
abrupt initial jumps of 2—-5 grain diameters reported by
Swanson et al. At large P (region III in Fig. 3) the
curves tend more and more to a single pronounced max-
imum, as we once more enter a region of invariant
toughness. In all cases, however, we note that the stabi-
lizing influences of the residual and microstructural
stress intensity factors render the strength insensitive to
the intial crack length.

It is in the transition region, region II, where the
form of the T curve most strongly influences the crack
stability and strength properties. The T curve for the
V12 alumina rises more steeply than that for the AD96
alumina. The difference in responses for the two materi-
als may be seen most clearly in the o, (¢) curves for
P =10 N, Figs. 6 and 7. In VI2 alumina the restraint
exerted on the crack by the interfacial bridges is appar-
ently much stronger than in AD96. We note that the
indentation-strength curves in Fig. 5 may be seen as “ro-
tated” versions of the T curves in Figs. 6 and 7.

A word is in order here concerning the “sensitivity”
of the parameter evaluation to the range of data. Figure
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8 shows the deconvoluted T curves for the VI2 material
with individual data points at either end of the indenta-
tion load range deliberately omitted from the base data
in Fig. 5(a). When data are “lost” from the large P end,
the high T'(¢) part of the curve is most affected; similar-
ly, for data omissions at the small P end, the low 7(¢)
part of the curve is most affected. We may regard the
curve shifts in Fig. 8 as characterizing the systematic
uncertainty in our parameter evaluations, just as the
mean residual deviation in the regression procedure
characterizes the random uncertainty. We note that it is
those parameters that control the upper and lower
bounds of the T curve that are subject to the greatest
uncertainty, since it is in these extreme regions (espe-
cially in the 7,-controlled region) where indentation-
strength data are most lacking. The central portions of
the T curves in Fig. 8 are not altered substantially by the
deletion of strength data.

Subject to the above considerations, we may now
usefully summarize the relative T-curve behavior for the
remainder of the materials listed in Table II. The T
curves are shown in Figs. 9-11 for each of the material
types, aluminas, glass—ceramics, and barium titanates.
Special attention may be drawn to the fact that the
curves for the microstructurally variant materials in
each of these composite plots tend to cross each other.
Wenote in particular that the curves for the polycrystal-
line aluminas in Fig. 9 cross below that for sapphire at
small crack sizes, consistent with earlier conclusions
that the intrinsic polycrystal toughness (7,) is gov-
erned by grain boundary properties.

ALO, (VI2)

172
)

TOUGHNESS, T (MPam

| I 1

CRACK LENGTH, ¢ (um)

FIG. 8. Deconvoluted T-curve plots for the VI2 alumina using full
indentation-strength data set from Fig. 5(a) (solid line) and same
data truncated (dashed lines) by removal of extreme data points at
(a) low Pand (b) high P.
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FIG. 9. Composite plot of the deconvoluted T curves for the alumina
materials.

V. DISCUSSION

We have considered a fracture toughness model
based on an independently verified interface restraint
mechanism®® for explaining the microstructural effects
previously reported in indentation/strength data.'™ A
key feature of our modeling is the strong stabilizing ef-
fect of grain-scale ligamentary bridges on the stability
conditions for failure. (In this sense our explanation
differs somewhat from that originally offered by us in
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FIG. 10. Composite plot of the deconvoluted T curves for the glass—
ceramic materials.
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FIG. 11. Composite plot of the deconvoluted T curves for the barium
titanate material.

Ref. 1, where it was tacitly suggested that the micro-
structural influence might be represented as a positive
decreasing function of crack size. The distinction
between negative increasing and positive decreasing K,
functions is not easily made from strength data alone.)
Although the earlier experimental observations used to
establish the model'® were based almost exclusively on
one particular alumina ceramic,' our own detailed crack
observations, and those of others, strongly suggest that
the model is generally applicable to other nontransform-
ing ceramics; the discontinuous primary crack traces

characteristic of the bridging process have since been
observed in other aluminas,'*?! glass—ceramics,'>?"*
SiC ceramics,”® and polymer cements.?’ The fact that
the resultant strength equations from the model can be
fitted equally well to all the materials examined in the
present study serves to enhance this conviction.

A characteristic feature of the failure properties of
the materials with pronounced T curves (e.g., VI2 alu-
mina) is the relative insensitivity of the strength to ini-
tial flaw size. This is a vital point in relation to structural
design. Materials with strong T-curve responses have
the quality of flaw tolerance. Ideally, it would seem that
one should seek to optimize this quality. Associated
with this tolerance is an enhanced crack stability. This
offers the potential detection of failures. On the other
hand, there is the indication that such benefits may only
be wrought by sacrificing high strengths at small flaw
sizes. This tendency is clearly observed in the way the
strength curves cross each other in Figs. 7-9 in Ref. 1
(corresponding to crossovers seen here in the T curves,
Figs. 9-11). In other words, the designer may have to
practice the gentle art of compromise.

We reemphasize that the T-curve parameters de-
rived from the strength data (Table II) are elements of
curve fitting and are subject to systematic as well as to
the usual random uncertainties. Since any four of these
parameters are independent, our numerical procedure,
regardless of “goodness of fit,”” cannot be construed as
“proof” of our model. Nevertheless, we may attach
strong physical significance to these parameters. For ex-
ample, the relatively large values of I'; and ¢* for the V1
materials relative to the corresponding parameters for
the F99 alumina is a clear measure of a greater T-curve
effect in the former. More generally, the aluminas with

TABLE II. T-curve parameters derived from strength data for m = 2 (from Refs. 1, 3, 4, 11).

T, T, I, r, d c* o* u*
Material (MPam!'/?) (MPam'/?) Jm™2?) Jdm™? (um) (zm) (MPa) (um)
VIl 1.73 4.08 3.8 10.4 40 420 280 0.11
vI2 1.49 4.63 2.8 11.8 60 540 328 0.11
AD999 2.22 4.30 6.4 12.0 15 715 188 0.19
AD96 2.16 2.87 8.5 5.6 15 460 80 0.19
AD90 2.76 3.21 13.8 4.6 15 210 75 0.18
F99 2.70 3.50 9.1 5.4 15 30 405 0.04
HW 2.64 4.31 16.9 21.4 95 710 153 0.42
Sapphire 3.10 3.10 11.3 0
SL1 1.06 1.98 6.4 11.2 10 335 122 0.27
SL2 1.12 2.29 7.1 15.0 10 485 129 0.35
SL3 1.35 2.58 10.4 19.0 25 505 133 0.43
Macor 1.04 2.30 8.4 20.4 40 535 132 0.46
Pyroceram 2.04 2.33 19.3 5.4 20 415 35 0.48
CH(cub.) 0.95 0.95 3.7 0
CH (tet.) 0.79 1.35 2.5 3.6 40 330 70 0.14
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glassy phases at their grain boundaries,” or with
smaller grain size (Tables I and II) have relatively low
toughness indices, I, /T, indicating that there is some
kind of trade-off between macroscopic and microscopic
toughness levels, and that this trade-off is controlled by
the microstructure. We note also that the maximum
stress-separation range parameters «* for the materials
are in the range 0.1-0.4 um, consistent with crack open-
ing displacement observations at the bridging
sites.»'>21=23 We thus suggest that such parameters
could serve as useful guides to materials processors, for
tailoring materials with desirable, predetermined prop-
erties, especially with regard to grain boundary struc-
ture.

Mention was made in Sec. IV of the sensitivity of
the parameter evaluations to the available data range.
This has implications concerning conventional, large-
crack toughness measurements. To investigate this
point further we plot in Fig. 12 the 7 values deter-
mined here against those measured independently by
macroscopic techniques. The degree of correlation in
this plot would appear to lend some confidence to our
fitting procedure (and to our a priori choices for the
parameters ¥ and y). Since most of our strength data
tend to come from regions toward the top of the T curve
we should perhaps not be too surprised at this correla-
tion.

Finally, we may briefly address the issue of test
specimen geometry in connection with the accuracy of
the parameter evaluations. It has been argued else-
where? that test specimen geometry can be a crucial fac-
tor in the T-curve determination. It might be argued, for
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FIG. 12. Plot of T, (Table II) as a function of independently mea-
sured toughness using conventional macroscopic specimens.

instance, that “superior” parameter evaluations could
be obtained from larger crack geometries, particularly
the c*, T, parameters. However, the indentation meth-
odology takes us closer to the strengths of specimens
with natural flaws, in particular to the 7\,-controlled re-
gions (notwithstanding our qualifying statements ear-
lier concerning this parameter), so that the present eval-
uations may be more appropriate for designers.

VI. CONCLUSIONS

(1) Anindependently confirmed ligament bridging
model is used as the basis for analyzing observed inden-
tation-strength data for a wide range of polycrystalline
ceramic materials.

(2) Those materials with pronounced T curves
show the qualities of “flaw tolerance” and enhanced
crack stability.

(3) A fracture mechanics treatment of the indenta-
tion fracture system with microstructure-associated fac-
tors incorporated allows for the (numerical) deconvo-
lution of toughness/crack-length (T-curve) functions
from these data.

(4) Comparisons within a range of aluminas sug-
gest that those materials with “glassy” grain boundaries
and smaller grain size have less pronounced T curves
than those with “clean” boundaries.

(5) The indentation-strength technique and the
toughness parameters deriving from it should serve as
useful tools for the development of ceramic materials
with predetermined properties, especially with respect
to grain boundary structure and chemistry.
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APPENDIX: EVALUATION OF ¢ AND y

Here we derive numerical values for the dimension-
less parameters ¥ and y characterizing the crack geome-
try and the intensity of the residual contact stress, re-
spectively. The choices for these should yield agreement
between measured strength and toughness properties of
homogeneous materials with no measurable T-curve be-
havior (ie,K, =0, T=T,=T,).

We begin with the geometrical ¥ term, which is as-
sumed to be material independent. From the applied
stress (strength) o, and crack length ¢, at the instabil-
ity point of an indentation, we can show that*

Y =3T/4(0,,c)). (A1)

Measurements of o, c}/* for several homogeneous mate-
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rials confirm that Eq. (A1) describes the toughness/
instability properties®>2 for ¢ = 1.24. We note that this
is very close to the value of 1.27 calculated by finite
element analyses of semicircular cracks in surfaces of
bend specimens.?’

For the y term we turn to Ref. 13, where it is shown
that

x=£EE/H)'?, (A2)

where £ is a material-independent constant. With this
result Eq. (12) may be rewritten as®®

T0:7](E/H)l/8(0'9npl/3)3/4, (A3)
where
7= (256¢'3¢ /27)/* (A4)

is another material-independent constant. From mea-
surements of 0% P '/? for a similar range of homogen-
eous material we obtain 7 = 0.52.%° Hence eliminating &
from Egs. (A2) and (A4) yields

Y =279 (E /H)"?/256¢°, (AS5)
which gives y = 0.0040(E /H)"'/?.
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