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Abstract—A self-consistent solution for continuum-slit Barenblatt cracks with interactive chemistry is
presented. Environmental species entering the crack mouth are limited in their transport along the
ever-narrowing interface by molecular size restrictions. The ensuing cohesion zone behind the tip consists
of three regions: an extended far region of weak solid—fluid-solid attraction; a small intermediate region
of strong solid-fluid—solid repulsion; and an exclusionary near-tip intrinsic region of strong solid-solid
attraction. To facilitate an analytical solution of the equations for the crack-opening displacements, the
cohesion stresses are taken to be uniformly distributed within each of these zones. The magnitudes of these
stresses are expressed in terms of the intersurface energies that define equilibrium crack states, for virgin
and healed interfaces. Illustrative calculations of the crack profiles are given for the well-documented
mica—water system. It is shown that the penetrating species cause a significant local bulge in the repulsion
region, consistent with Thomson’s picture of a molecular wedge.

Résumé—On présente une solution autocohérente des fissures de Barenblatt en fente continue avec chimie
interactive. Les espéces environnantes entrant par 'ouverture de la fissure sont limitées dans leur transport
le long de l'interface toujours étroite par des restrictions de taille des molécules. La zone de cohésion
résultante derriére I'extrémité est formée de trois régions: une région assez étendue de faible attraction
solide-fluide—solide; une petite région intermédiaire de forte répulsion solide-fluide—solide; une région
intrinséque d’exclusion, prés de 'extrémité, de forte attraction solide-solide. Pour faciliter une solution
analytique des équations donnant le déplacement d’ouverture de la fissure, les contraintes de cohesion sont
prises uniformément réparties a l'intérieur de chacune de ces zones. La grandeur de ces contraintes est
exprimée d’aprés les énergies interfaciales qui définissent les états d’équilibre des fissures, pour des
interfaces vierge et perturbée. Des calculs de profils de fissures sont donnes pour le systéme bien connu
mica—eau. On montre que les espéces pénétrantes provoquent un bombement local important dans la
région de répulsion, en accord avec I'image de Thomson d'un coin moléculaire.

Zusammenfassung—Es wird eine selbstkonsistente Losung fiir Birenblatt-Kontinuums-Risse mit wechsel-
wirkender Chemie vorgelegt. Die in die RiBmiindung eindringenden Umgebungsspezies sing in ihrem
Transport entlang der immer enger werdenden Grenzfliche wegen der Einschrdnkung durch die
MolekiilgroBe behindert. Die folgende Kohiésionszone hinter der Spitze besteht aus drei Zonen: eine
ausgedehnte Fernzone schwacher fest-flissigfester Wechselwirkung, einer kleinen Zwischenzone
starker fest—fliissig—fester AbstoBung und einer exklusiven intrinsischen Zone in der Nédhe der Spitze mit
starker fest-fester Wechselwirkung. Zur Erleichterung der analytischen Lésung der Gleichungen fiir die
RiBoffnungs-Verschiebung werden die Kohisionsspannungen als gleichférmig in jeder dieser Zonen
verteilt angenommen. Die Hoéhe dieser Spannungen wird anhand von Energien zwischen den
Oberflichen, die den Gleichgewichtszustand des Risses definieren, fiir jungfriuliche und geheilte
Grenzflichen ausgedriickt. Illustrierende Berechnungen der RiBprofile werden fiir das Wohlbekannte
System Glimmer— Wasser durchgefiihrt. Es wird gezeigt, daB die eindringende Spezies eine betrachtliche
Ausbeulung in der AbstoBungszone verursacht, welches vertraglich ist mit Thomsons Vorstellung eines
molekularen Keiles.
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1. INTRODUCTION

In Irwin linear elastic fracture mechanics [1] the walls
of continuum-slit cracks in ideally brittle solids are
presumed to be traction-free. An inevitable conse-
quence of this presumption is a pervasive singularity
at the crack tip. The near-field crack-opening profile
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is predicted to be parabolic, corresponding to an
infinite crack-tip strain (or stress). Any such singular-
ity is, of course, unphysical—intersurface cohesive
bonds are intrinsically limited in the level of strain
that they may sustain [2]. It was to remove the
singularity that Barenblatt proposed his cohesion-
zone theory [3], in which a distribution of cohesion
intersurface stresses immediately behind the crack tip
replaces a line of infinitesimally concentrated closure
forces at the crack tip. The effect of the extended
cohesion zone is to generate a crack-tip stress
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intensity factor equal and opposite to that from
externally applied loads—i.e. a “cancellation of K-
fields”. Within the cohesion zone the crack walls close
smoothly into a nonsingular cusp rather than into a
singular Irwin parabola. In that the integral of the
cohesive force-separation function defines a revers-
ible surface energy, as it does in brittle ceramics [4],
the Barenblatt model remains entirely consistent with
the Griffith energy-balance concept of equilibrium
fracture [2, 3].

Thus far, the Barenblatt model has been con-
sidered only for cracks in vacuum. Even there,
attempts to determine actual near-tip crack profiles
for specific brittle materials are few [5, 6]. Yet it is
precisely in the near-tip region that the fundamental
processes of crack propagation are decided. Given the
interplanar stress p as a function of crack-plane
coordinate x, p(x), the Barenblatt profile can be
formulated explicitly in terms of Green’s function
integrals. The difficulty is that p is not generally
known a priori as a function of crack-plane coordi-
nate x, but rather as a function of crack-opening
displacement u, so we have u(x)=f{pu(x)]}. A
self-consistent approach to the Barenblatt problem
thereby involves a nonlinear integral equation.
Closed-form solutions of this nonlinear integral
equation can be obtained only for the special case of
an intersurface stress that is constant over the
cohesive zone [2, 7].

For brittle cracks in an active environment, chemi-
cal interaction between the pristine surfaces and
intrusive species adds a further degree of complexity.
Detailed qualitative considerations of the atomic
structure at crack interfaces in mica, sapphire and
glass [8,9] suggest that commonly deleterious
environmental species like water do not generally
have unlimited access to the crack tip—the size of
the intruding molecules and the confinement of
the closing walls are critical constraints in the
solid—fluid-solid interaction within the cohesion (or
adhesion) zone [8]. The invasive species, by virtue of
their affinity with the crack surfaces, are sucked in to
the crack-tip [10] region to a point where
Born-Mayer repulsion with the solid atoms at the
walls restricts any further progress, like a “molecular
wedge” [9].

In this paper, we provide a simple quantitative
analysis of the crack profile for a Barenblatt crack in
an interactive environment. Our analysis retains the
advantages of the continuum-slit description, by
assuming that the intersurface stresses are distributed
over a cohesion zone much larger than atomic dimen-
sions. However, it also incorporates essential atom-
istic elements, by allowing for molecular size
effects in the underlying force-separation function
that governs equilibrium crack states, including
metastable equilibrium states needed to account
for crack healing [11]. To this end we distinguish
the following regions of the cohesion zone [8]: (i) a
far region of penetration by environmental species
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some distance behind the crack tip where relatively
weak attractive solid—fluid—solid interactions persist;
(ii) an intermediate region closer to the tip where
the adsorbing molecules begin to press against
adjoining crack walls, producing a configurational
solid—fluid—solid repulsion; (iii) a near-tip region
where intervening molecules are excluded by the
ever-confining walls, so that an attractive solid—solid
interaction prevails. Explicit solutions of the non-
linear integral equations for the crack profile are
then obtained in the approximation of constant
intersurface stress within each of these regions. For
illustration, equilibrium profiles are computed for
the well-documented mica-water system [11,12].
It is shown that whereas the overall effect of the
environmental interaction is to reduce the crack
opening, by virtue of a reduction in interface energy,
the penetrating species cause a significant local bulge
in the Born—Mayer repulsion region, consistent with
the molecular-wedge picture. The model has strong
implications concerning crack kinetics in brittle
solids.

The same kind of chemically modified Barenblatt
profiles are expected to apply to Hertzian-like con-
tacts with adhesion [5, 13-15].

2. MODEL FOR BARENBLATT CRACK WITH
CHEMICAL INTERACTION

In this section we first consider the fundamental
stress- and energy-separation functions for an envi-
ronmentally interactive solid—fluid-solid system,
using the relatively well understood vacuum
solid—solid system as a reference base. Then we
determine specific crack-opening profiles using the
Barenblatt formalism.

2.1. Fundamental and

Sfunctions

energy- stress-separation

To solve the general Barenblatt crack problem one
needs information on the cohesive stresses p(x) in
Fig. 1. These cohesive stresses uniquely determine
the equilibrium mechanical-energy-release rate J

|
—x —

)
| 4
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Fig. 1. Crack subjected to intersurface stresses over Baren-
blatt cohesion zone (shaded) of length A and crack-opening

displacement 8. Object of study is to determine the crack
profile u(x).
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according to a Rice J-integral contour over the crack
walls [16]

J =2~rp(x)(6u/6x) dx

0
=2J:ﬂwdu=2v (M

where 4 is the length of the cohesive zone along the
crack-plane coordinate x, é is the corresponding
value of crack-opening displacement 2u, and vy is an
appropriate surface or interface energy. This simple
relation foreshadows an underlying interchangeabil-
ity between p(x) and the more fundamental intersur-
face separation function p(u)—the link is, of course,
the u(x) function that is the very object of this study.

Consider the separation of two planar solid walls
separating in vacuum, Fig. 2(a), and in fluid,
Fig. 3(a). For solid—solid interaction in vacuum, there
is a single well-defined maximum in the stress-
displacement function p(#), and minimum in the
corresponding energy-separation function U(u). Our
simplification here is to replace the smooth curves by
the linearised approximations shown in Fig. 2(a),
such that the cohesive stress is constant at p, over an
interaction range d, and the area under the p(u) curve
defines the bulk surface energy

2yp = Po0y. 2

The equivalent construction for the solid—
fluid—solid interaction in Fig. 3(a) is more complex.
The work of separation of the wvirgin solid walls is

p(w)
(@) Py /

Uu) )

S 2u

(b) p(x)

X
-— )\‘0

Fig. 2. Interaction diagrams for solid—solid system in vac-

uum. (a) Intersurface stress p(u) and energy U(u) as func-

tion of separation 2u. (b) Corresponding stress p(x) as

function of distance x behind crack tip. Smooth functions

are replaced by linearised approximations. Positive p desig-
nates attractive stresses.
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Fig. 3. As for Fig. 2, but for system in interactive fluid.

reduced by the environmental interaction to the
interface energy 2ygs. In general, the U(u) function
contains several subsidiary minima, allowing for
metastable states [17]. These metastable states occur
at separations approximately equal to integral num-
bers of fluid-molecule diameters, where the structure
of the fluid is highly ordered [17, 18]—for our pur-
pose, it is sufficient to consider just the first such
subsidiary minimum. At small separations, the energy
curve is identical to that in vacuum. Departure occurs
beyond the first maximum, corresponding to pen-
etration of the first layer of fluid molecules. On
closing the solid walls the invasive layer may become
trapped at the interface, increasing the energy level of
the “closed interface” by a “fault energy” y, [11, 12].
This energy of formation of the occluded interface
accounts for a further reduction work of separation
to 2ygg — 7, On repropagating cracks through healed
interfaces. We note that the branch of negative slope
on the U(u) curve corresponds to a configurational
repulsive stress p(#). Once more replacing the smooth
curves by linearised approximations, the areas under
the p(u) curve yield

2ypE = Po0; +p1(0, — 6) + (65— 3,)  (3a)
P = P01 + (6, — 6)) (3b)

where p,, p; and p, are constant stresses, and J,, J,
and J; corresponding ranges, defining successive
attractive, repulsive and attractive segments of the
stress—separation curve.

We can use the above formulation to obtain useful
relations for the stress and range parameters in terms
of experimentally measurable quantities for our crack
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profile calculations below. For vacuum separation,
the range J, is typically 1-3 times the spacing of
atom layers bounding the cleavage plane. From
equation (1)

Po=273/0,. )

For separation in a fluid, the crack opening d, at the
subsidiary minimum is identified with the opening
needed to accommodate one layer of the intruding
molecules interstitially at the solid—solid interface.
Simplistically, we suppose that the first energy maxi-
mum in Fig. 3(a) lies midway between the primary
and subsidiary minima, é, = §,/2. From equations (3)
and (4) we obtain

P1= —2yp/0 + 27,/0, (5a)
P2 = (2ype — M)/(05 — 6,)- (5b)

Generally, J, is somewhat less than the true diameter
of the fluid molecules (corresponding to a molecular
compression <50%) [8]. The separation at which the
interaction effectively cuts off may be long-ranged,
d,> 9, [17, 18].

2.2. Barenblatt crack profile relations

Now consider the crack-opening displacement
profiles u(x) for an equilibrium crack subjected to
interplanar cohesion stresses. With our constant-
stress approximations above it is straightforward to
convert from fundamental intersurface p (1) functions
to crack-plane distribution functions p(x) in the
manner of Figs 2(b) and 3(b)—one has only to
replace the delineating crack-opening displacements &
in equation (1) with corresponding cohesive-zone
coordinates A.

A general expression for a slit crack subjected to
combined applied loads and cohesion-zone stresses
follows from simple manipulations of Barenblatt’s
original analysis [2, S, 19]

A
u(x) = (2/nE’) j PluGx ) [20x /x")"
0

— Inj(x 1 4 X)) 1 — X)) dx” (6)

in the limit A < crack length; x is a field point and x’
a source point; E’ = E/(1 —v?) in plane strain, with
E Young’s modulus and v Poisson’s ratio. The first
term in the square bracket at right represents the
unstressed Irwin parabola, u occx!?; the second term
represents the modifying effect of the intersurface
stresses. It is readily shown that in the very-near
crack-tip region of the cohesion zone, x <4, the
profile closes asymptotically into a cusp, uocx??
[2,5,19].

First apply this formulation to the vacuum crack
system depicted in Fig. 2(b). Cohesion stresses
p(x)=p, act over 0<x <A4,. Substituting into
equation (6) and integrating gives

u(x) = (2py Ao [LE")[2(x [20)'?
= (1= x/A)Inl(2¢” + x")/(A5” — x")II. (7)

KAI-TAK WAN and LAWN: BARENBLATT CRACK PROFILES

At the edge of the cohesion zone, 2u = §,, x = 4,
equation (7) may be combined with equation (2) to
yield the simple relation

o =nE’'82/167s. (8)

Now consider the crack in the fluid environment,
Fig. 3(b). The cohesion stress zone subdivides into
three regions: p(x)=p, over 0 <x < 4,; p(x)=p,
over A, <x < JA,; p(x)=p, over 1, < x < 4;. Substi-
tuting once more into equation (6) and integrating,
we obtain

u(x) = Q/mEN{(po — p )i [2(x /)" — (1 — x/A)
< Inj(217 + x2)/(A17 — X))
+ (P = P)A[2x[2,)"? — (1 — x[1;)
xIn|(257 + x"2)/(A77 — x "))
+ Pads[20x/A3)' — (1 — x/43)
xInj(232 + x"2)/(A37 — x "))} &)

The following boundary conditions may then
be invoked: 2u(x =1))=68;; 2ulx=21,)=20,;
2u(x = A;) = d;. This yields three implicit equations
which may be solved simultaneously to obtain 4,, 4,
and 4;.

3. CALCULATIONS FOR MICA-WATER
CRACK SYSTEM

We illustrate the above analysis with computations
on one of the best-studied brittle systems, muscovite
mica in water. Mica is near-ideal because of its
atomically smooth cleavage. This smoothness allows
crack propagation to be studied with minimum com-
plication, at both virgin and healed interfaces. Water
is acknowledged as one of the most invasive environ-
ments in brittle cracks. Values of the necessary par-
ameters in the crack-profile relations are obtainable
from earlier considerations of the molecular structure
of the mica—water interface [7] and experimental
determinations of interface energies [11, 12, 20].

We begin by evaluating essential material par-
ameters for the virgin mica system, using fracture
data from earlier studies:

(i) For vacuum, the surface energy is taken as
2y = 3020 mJ -m~2 [20]. The solid—solid intersurface
stresses in mica are predominantly ionic, with esti-
mated force-separation range §, = 0.89 nm [20]. This
yields p,=3.40 GPa from equation (4). With
E'=60GPa [8], we obtain Al,=6.2nm from
equation (8).

(ii) For water, measurement of equilibrium crack
lengths reveal a greatly reduced interface energy,
295 =276 mJ-m~2 [11,12,20]. Comparative mea-
surements at healed interfaces provide an estimate of
the “fault energy”, y,= 124 mJ-m~2 [I1,12]. The
wall-wall opening necessary to accommodate exactly
one layer of water molecules of diameter 0.28 nm
within 6-fold oxygen-coordinated interstitial sites at
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Table 1. Barenblatt cohesion-zone parameters for mica in water,

calculated using p,=3.40 GPa, p, = —1.84 GPa, §,=0.89 nm,
6, =0.08 nm, J,=0.16 nm, for selected values of d,
03/9, p,(GPa) 4, (nm) 4,(nm) A3(nm)
5 0.238 0.45 0.99 22
10 0.106 0.44 0.95 83
20 0.050 0.44 0.93 320

the mica cleavage interface is 6, =0.16 nm [8]—the
displacement §,=6,/2=0.08 nm thereby corre-
sponds to ~30% compression of the water mol-
ecules. Inserting this value of d, into equation (5a)
yields p;, = —1.84 GPa, a substantial repulsive stress.
Stresses p, evaluated from equation (5b) using a
variety of ratios d;/d, =5, 10, 20 are seen in Table 1
to be relatively small. Table 1 includes corresponding
values of the cohesion-zone dimensions 4,, 4, and 4,
evaluated numerically in accordance with the appro-
priate boundary conditions for equation (9).

Figure 4 shows the Barenblatt profile computed
from equation (7), along with the reference Irwin
parabola (limit of 4, — 0), for mica in vacuum. (Note
that the crack-opening axis is expanded relative to the
crack-plane axis.) There is a strong pinching down of
the crack into a cusp-like contour in the near field,
x < Jy, and asymptotic approach to the Irwin con-
tour in the far field x > A,, as described by Barenblatt
[3] and others [S]. The rather abrupt transition from
the cusp to the open profile immediately outside the
edge of the cohesion zone is undoubtedly exagger-
ated, owing to the artificial square-wave discontinuity
in stress at x = 4, [Fig. 2(b)].

Analogous Barenblatt and reference Irwin crack
profiles (limit of 4,, 4,, 4; - 0) from equation (9) for
mica in water are plotted in Fig. 5, for two of the
three test values of d;/d,: Fig. 5(a) focusses on the
near field, x < /,, Fig. 5(b) on the far field, x > 4,.
A cusp is evident in the “protected zone” at x < 4,,
where the intrinsic solid-solid stress p, persists. In
the intermediate zone 1, < x < 4,, the action of the
solid—fluid—solid overlap stress p, from the sucked-in
molecules repels the walls, producing a pronounced

Fig. 4. Crack profile for virgin slit-crack, mica in vacuum.

Note expanded vertical scale. Solid curve is Barenblatt

profile, equation (7). Dashed curve is reference Irwin

parabola. Observe cusp-like contour at crack tip at x < 4,

asymptotic approach to Irwin contour outside cohesion
zone at x > 4.
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(a)

(b) u (nm) 193

Fig. 5. Crack profile for virgin slit-crack, mica in water.
Solid curves are Barenblatt profiles, equation (9). (a) Near
field, for §,/8, =5 (outer profile) and 10 (inner profile); (b)
far field, for 8;/6,=10. Note expanded vertical scale.
Dashed curve is reference Irwin parabola. Cusp-like closure
is still evident at crack tip. However, outside immediate tip
zone the crack walls open up under the repulsive action of
invasive water molecules. In far field profile again ap-
proaches Irwin parabola.

bulge. The profile in this region is seen to be relatively
insensitive to the choice of d,;/d,. Further from the
tip, within 1,<x <4;, the longer range weak
solid—fluid-solid attractive stress p, pulls the crack
walls in again. Notwithstanding an artificial constric-
tion at x = 4,, due to the discontinuity in the stress
function at that point [Fig. 3(b)], the crack opening
is constrained at close to the diameter of water
molecules over a distance of some tens of nm, depen-
dent on J,/6,. Ultimately, at x > 1;, the profile tends
again to the Irwin parabola.

It is informative to compare the equilibrium Baren-
blatt mica crack profiles for vacuum and water on the
same diagram, as in Fig. 6. In the far field (not shown
in Fig. 6) the crack opening in water is relatively
narrow, because of the considerably lowered surface
energy (ype <7s). In the near field, however, the
wedging action of the water molecules widens the
crack beyond the reference vacuum profile. The
crack opening close to the crack tip is clearly highly
sensitive to the nature of the local cohesion stresses.

4. DISCUSSION

In this paper we have modified Barenblatt
theory to compute the contours of brittle cracks in
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Fig. 6. Comparison of Barenblatt crack profiles for virgin

mica, for equilibrium condition in equation (1): vacuum

(Fig. 4), dashed curve; water (Fig. 5), solid curve (for
05/, = 10). Note expanded vertical scale.

chemically active fluid environments. Our model
assumes that the fluid species at first manifest them-
selves as a weak wall-wall attraction, then a repul-
sion, as they penetrate down the ever-narrowing
interface. The penetration is ultimately limited by
molecular size constraints, leaving a small inaccess-
ible cusp of strong solid—solid attraction immediately
behind the crack tip. The approximation of constant
intersurface stress within each of these successive
attraction-repulsion—attraction regions allows simple
solutions to an otherwise intractable nonlinear inte-
gral equation. Discontinuities in the stress distri-
butions at the regional boundaries manifest
themselves as unrealistic constrictions in the calcu-
lated contours, but these local perturbations do
not detract from the principal physical conclusions.
The formalism is expressed in terms of readily
available quantities, appropriate interface energies
measured from equilibrium crack configurations and
molecular range parameters deduced from interface
crystallography.

The calculations reinforce Thomson’s “molecular
wedge” conception of crack-tip chemistry [9]. Thus
although water drastically reduces the interface
energy of mica, and correspondingly reduces the far
K-field at equilibrium applied load, the near-tip
crack-opening displacement in Fig. 6 is significantly
dilated by the molecular intrusion. This dilation may
be attributed to a “configurational opening line
force” averaged over the cohesion zone 0 < x < 45 in
Fig. 3(b)

Gg=—(Ps — Pye)
= —(2yp — 2ypg)/d;. (10)

Physically, the negative force § is a manifestation of
the real repulsion between A, <x <41, and the re-
duced attraction (adsorption, dielectric screening
[11,12,20]) between A, <x <2;. It may also be
regarded as an equal but opposite line force exerted
by the crack on the intruding molecular wedge, acting
to expel the latter from the interface [9].

It is interesting to compare and contrast Thom-
son’s calculations [9] of the mica—water crack-inter-
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face structure with our own. Thomson used a
lattice-crack model, with very specific assumptions
concerning the discrete (dipolar) interactions of water
molecules with (hard-sphere) constituent ions in the
mica. His intermolecular functions were not expressly
designed to match the relative interface energies of
virgin and healed equilibrium cracks. The present
quasi-continuum model incorporates these interface
energies as critical parameters, without the need for
any detailed knowledge of the underlying, discrete
interactions. Despite this fundamental difference in
approach, our quantitative estimates of the critical
Barenblatt dimensions in the secondary (solid—
fluid—solid) interaction zone agree in essence with
Thomson. Thus in Fig. S there is a highly confined
region of weak solid—fluid—solid attraction
(43 > x > A,) extending typically =100 nm along the
x coordinate (d,/3, =10, Table 1), culminating in a
leading edge of repulsion (4, > x > 4,) over ~0.5 nm.
On the other hand, whereas the continuum-slit con-
straint ¥ =0 at x =0 artificially limits the inaccess-
ible primary (solid—solid) interaction zone ahead of
the molecular wedge (4, > x > 0) to 0.5 nm in our
model, Thomson’s elastic lattice-plane Green’s func-
tion more realistically accommodates (nonlinear)
bond stretching over the extended crack plane
(4, > x > —0). Hence the present model inevitably
underestimates the length of the inaccessible cusp [2].

Notwithstanding this last point of departure from
physically reality, our simple linear elastic fracture
mechanics does incorporate the essential scale of the
environmental molecules within the structured mica
interface. To consider the lattice discreteness more
closely, we reproduce in Fig. 7 the water-modified
Barenblatt crack for virgin mica from Fig. 5 using an
appropriately scaled elastic-sphere construction [8],
with cleavage-plane oxygen layers displaced out-
wardly from the bounding Barenblatt contours by
one-half the equilibrium interlayer separation. Inter-
layer potassium ions maintain the oxygen layers at
their zero-stress separation ahead of the crack tip.
Water penetrates the interface to a configuration of
~30% molecular compression at available (6-fold
oxygen-coordinated) interstices within the constrain-
ing mica surface structure (Section 3). Figure 7 is very
different from the traditional picture of a continuum
fluid with unrestricted access to the singular tip of a
traction-free Irwin parabola [8].

The crack-interface configuration in Fig. 7 rep-
resents an equilibrium state. Increasing increments
(or decrements) in the equilibrium K-field cause
brittle cracks to extend (or contract) at monotonically
increasing velocities [11,21]. Traditionally, the kin-
etics have been attributed to the rates of concentrated
reactions between the ingressing molecules and the
terminal line of crack-tip bonds. It is evident from
Fig. 7 that molecular diffusion along the constrained
interface, particularly at the leading edge of the
molecular wedge, is far more likely to be rate-con-
trolling in mica. Thus far, such interfacial diffusional
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Fig. 7. Atomic representation of Barenblatt crack profile for mica-water system, redrawn from Fig. 5(a)

but without expanded vertical scale. Atoms drawn to hard-sphere scale show bounding oxygen layers

(open spheres) with intervening potassium ions (filled spheres) at the mica cleavage plane. Intrusive water

molecules (shaded spheres) are allowed to penetrate to x = 4,. CC designates crack tip, 4, and 4, cohesion
zone dimensions. Structure after Ref. [8].

processes have received only phenomenological treat-
ments in the literature [22].

It is also evident from Fig. 7 how a layer of invasive
molecules is likely to be trapped at the interface in the
event of crack retraction. The ensuing interface with
occluded layer corresponds to the subsidiary mini-
mum in Fig. 3(a). Repropagation through this
metastable, “healed” interface requires less work to
separate the walls relative to the virgin “‘ground
state”, by an amount equal to the fault energy 7y,
[11, 12]. We emphasize that this energy term is explic-
itly incorporated into our crack profile analysis,
through equation (5). If the exposed interface is
rotated about a common normal prior to healing so
that the recontacting surfaces are out of “lattice
registry”, y, is subject to increase [12,20]. It is this
last configuration that pertains most closely to
adhesion states at contacting surfaces [13-15], as
measured for instance in the Israelachvili surface
forces apparatus [23].

In principle, the theoretical formulation in Section
2 applies to a broad range of ceramic—fluid crack
interfaces [8]. At the mica cleavage plane, despite the
fact that the packing of interlayer atoms is not too
dense, the molecular wedge does not penetrate to the
(nominal) crack tip. In sapphire the atoms at the
fracture plane are much more closely packed, so the
penetration is expected to be even less. In the opposite
extreme of silicate glasses with “open” network struc-
tures the molecular wedge may penetrate with con-
siderably less restriction—in this special case the
traditional picture of a concentrated bond-rupture
reaction may apply [24].
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