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Model for Toughness Curves in Two-Phase Ceramics: Il,

Microstructural Variables
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The fracture mechanics analysis of Part I is here extended
to consider the effects of volume fraction and scale of
second-phase particles on the toughness-curve properties of
ceramic-matrix composites. Increasing these variables
enhances the flaw tolerance of the material, but only up to
certain limits, beyond which bulk microcracking occurs.
These limits define domains of damage accumulation and
potential strength degradation by microcrack coalescence.
In the familiar approximation of elliptical crack-wall pro-
files, we show that the principal effects of increasing volume
fraction (or expansion mismatch) and particle size is to
enhance the slope and scale of the T-curve, respectively. We
also derive expressions for the microcracking limits and use
these expressions to construct a simple design diagram for
characterizing the effects of microstructural variation on
mechanical behavior. Indentation-strength data on AlL,O,/
AL TiO; composites over a range of volume fractions and
particles sizes are used to demonstrate the severe loss in
mechanical integrity that can be suffered on entering the
microcracking domains.

L.

IN PART 1,' we developed a simplified fracture mechanics
toughness-curve (7-curve) model for two-phase ceramics.
Experimental indentation—strength data on an alumina-matrix/
aluminum titanate (Al,O,/Al,TiO;) particle-reinforced com-
posite were used to confirm the essential features of the model
and to calibrate controlling microstructural parameters for the
T-curve. We are now placed to predict the effects of specified
microstructural change on the toughness and strength properties
of that composite system.

Accordingly, in Part I we investigate the predictive capacity
of the model by analyzing the effects of volume fraction V; and
particle size / of the second phase, in addition to matrix/particle
expansion mismatch stress oy, on the toughness. We shall show
that increasing V; (or a) and /, respectively, enhances the slope
and scaling characteristics of the T-curve, with profound conse-
quences concerning crack stability. Beyond critical composi-
tions the material is able to sustain multiple flaw extension prior
to failure. This is the domain of microcrack damage accumula-
tion and nonlinear stress—strain response. At even higher V; and
[, the strength is severely degraded, indicative of microcrack
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coalescence. Indentation—strength tests on Al,O,/Al,TiO; com-
posites with different volume fractions and particle sizes are
used to validate these predictions.

The model will be discussed in special relation to microstruc-
tural strategies for optimum toughness characteristics, in terms
of a simple design diagram.

II. Effect of Microstructural Variables on

Toughness and Strength

Using the “calibrated” T-curve, T(c), function for the refer-
ence composite material of Part I, we set out to predict the
influence of two major microstructural variables, volume frac-
tion V; and particle diameter /, on the indentation—strength char-
acteristics. Internal residual stress o is also a parameter of
potential interest, but that quantity is invariant for a given
matrix—particle composite system. We again address the spe-
cific configuration of a half-penny crack in a semi-infinite
medium.

(1) Microstructure Parametric Relations

In this subsection we seek relations between V; and / and the
controlling microstructural parameters in the T(c) formalism of
Section II, Part I: i.e., shielding stresses p and ¢, and bridging
zone dimensions A and A.

The microstructural dependence of the shielding stresses is
given by Egs. (2) and (3), Part I:

1
q = Evf(l — Vog

(0 =<2u=g) (la)

pP= %ﬂMEgi(l - V)og (&l =2u= £§l) (1b)
with M a microstructural geometry parameter, . a friction coef-
ficient, and €, and €, size-independent strains at which the
bridging particle relaxes its elastic crack-opening stresses and
disengages from the matrix, respectively. Eqs. (1a) and (1) are
basic microstructural stress relations for the T-curve. Observe
that p and g depend on V; (and o), but not on /.

Analogous microstructural dependencies of A and A can be
obtained from Eq. (3), Part I, but less directly, requiring rela-
tions between A and 8, A and £&. It is now necessary to introduce
appropriate crack-opening displacement relations. To maintain
an equilibrium state, these relations must be solved simultane-
ously and self-consistently with the K-field condition K ,(¢) =
T(c) in Eq. (6) of Part I, using Eq. (8) in Part I to evaluate T(c)
in the appropriate crack-size domains. Generally, such crack-
opening displacement relations are couched in a nonlinear inte-
gral equation formalism.>™ In the present study, in the interest
of maintaining simplicity, we use first-order solutions for
strictly uniform stresses over the entire crack plane, i.e., ellip-
tical profiles,” giving

& = (UT,/E")(2N)"
£ = (QT/EHQ2A)"

(2a)

N<< ) 2b)
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with E’ = E(1 — v?), E Young’s modulus and v Poisson’s ratio,
and T, the matrix (grain boundary) toughness, again regarding A
and A as constants for a given microstructure.

Of course, the actual internal stress distribution over the
crack plane in Fig. 3, Part I, is highly nonuniform, with discon-
tinuities in stress and stress gradient at » = \. Inreality, relative
to the profile solutions of Eq. (2), the walls will bulge open in
the opening-stress domain ¢ — A < r = ¢ immediately behind
the tip and, conversely, pinch down in the more remote closure-
stress domain ¢ — A — N\ =< r = ¢ — \.° Under such condi-
tions, neither A nor A will be strictly independent of p and ¢
(hence V}), or even of ¢ (until one satisfies the requirements of
the “small-zone” approximation A << A << ¢°). Here, even
though the displacement field equations are actually integrable
for the stresses shown in Fig. 3 of Part I,>”* we choose to avoid
such complexities in order to bring out the essential microstruc-
tural dependence of the 7T-curve more clearly.

Inversion of Eq. (2), in conjunction with Eq. (3) of Part I,
yields relations

A= %(8,3E’/2\1;T0)212 3a)

A= %(i-:,gE’/2\JJTo)212 A <<A) (3b)
which (neglecting any influence of the second phase on E') are
independent of V; (and also o) and c, but scale with /. Equa-
tions (3a) and (3b) are basic microstructural scaling relations
for the T-curve. Note that A/\ = (g,/€;)* = constant, indepen-
dent of V; (and o) and /; i.e., A and \ scale similarly with any
change in the particle size.

(2) Damage Accumulation by General Microcracking

In our concluding remarks to Part I we alluded to a potential
transition in flaw stability, depending on whether the extrapo-
lated intercept of the “linear” T—c"* function (Eq. (9), Part I) on
the T-axis is positive or negative. The critical, zero-intercept
transition condition is illustrated in the schematic of Fig. 1,
where T'(c) is plotted as the solid curve. Let us consider intrinsic
flaws that are free of spurious residual stresses (i.e., x = 0 in
Eq. (11), Part I), and that have evolved fully through the bridg-
ing field from inception. Then the origin of the K,(c) function,
K. = K, = Yo ,c”?inEq. (12), Part I, plotted as the shaded line
in Fig. 1, coincides with that of the linear 7—c'? function. Using
this critical transition configuration as a reference state, and
supposing the material to contain at least a proportion of flaws
of initial size ¢ = ¢, within the two vertical dashed lines in Fig.
1, we may usefully delineate the following regions of stability:

K\(©) /

T(c)

Stablized
growth
region

Toughness, T

Crack Size, c'?

Fig. 1. Schematic diagram showing 7-curve construction at limit of
bulk microcrack activation. Solid curve is T(c) at critical condition
given by Eq. (6), shaded line is K, = yo,c' Any flaw of initial size
within the two vertical dashed lines will extend stably along the
T-curve to failure at the extreme right dashed line.
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(A) Positive Intercept, No Microcracking: For a material
with positive intercept, such as our reference material in Fig. 6
of Part I, the equilibrium configuration K, = ya,c}/* = T cor-
responds to a slope dK,/d(c'?) > dT/d(c"?). Failure then
occurs abruptly and unstably from a single critical flaw at ¢ =
¢;. Nevertheless, the material shows flaw tolerance, because the
toughness T at failure effectively increases with ;. For systems
Jjust at the transition in Fig. 1, the strength becomes altogether
independent of c; i.e., the equilibrium is neutral. The applied
stress—strain response is linear in this region.

(B) Negative Intercept, Activated Microcracking: For a
material with negative intercept the condition K, = Tatc = ¢,
corresponds to a slope dK,/d(c"?) < dT/d(c'?). The flaw then
undergoes a precursor stage of stable extension with increasing
o4, until a tangency condition dK,/d(c'?) = dT/d(c'?) is met.
The strength o for breaks from natural flaws is now altogether
independent of ¢;. In this region, even though failure still occurs
from a single critical flaw, other flaws may nevertheless
undergo significant prefailure extension. This can result in
accumulation of microcrack damage through the material prior
to failure, the more so as the negative intercept increases. The
applied stress—strain response of the material now becomes
nonlinear.

(C) Negative Intercept, Spontaneous Microcracking: With
still further depression of the negative intercept, such that the
minimum in the T-curve falls below the c-axis, the system
enters a severe-damage domain in which flaw pop-in can occur
in the absence of applied stress, increasing the density of stable
flaws and further enhancing the stress—strain nonlinearity.

The configuration of Fig. 1 delineating the transition between
states (A) and (B) above corresponds to a critical volume frac-
tion V¥ (or residual stress o¥) at fixed /, or to a critical particle
size [* at fixed V;. This critical condition may be formalized by
requiring T = 0 at ¢ =0 in the T(c) function of Eq. (9) in Part I,
yielding

[(p + QN1 = Tohb “

Invoking Egs. (1) and (3) above allows us to express Eq. (4) in
terms of microstructural variables,

[Vi(1 — V)logl* = 4T3/(1 + mue)eE’ (5)

Hence, damage accumulation may be promoted by increasing
the volume fraction (or residual internal stress) or scaling up the
particle size.

An analogous condition for spontaneous microcracking may
be obtained by requiring the minimum in the 7T(c) function to
intersect the c-axis. Approximating this minimum as the inter-
section point of the T—c'* functions in Egs. (8a) and (9) in Part
I,ie.,T = 0 atc =2\, we have

[g2N)"21¥* = T,/ (6)
Again invoking Egs. (1) and (3), we obtain
[Vi(1 — V)logl** = 4T}/e,E’ @)

which is greater than [Vi(1 — V;)log]* in Eq. (5) by a factor
1 + mpe, (neglecting any reduction in £’ from the microcrack-
ing). The latter factor therefore defines a “window” of activated
damage.

In the nonlinear region lower-bounded by Eq. (5), the pros-
pect exists for coalescence of the stable microcracks, with atten-
dant strength degradation. Coalescence is a ‘“many-body”
problem, depending on the characteristic spacing between
neighboring, interactive microcrack sources in an actively
evolving population. There is therefore a stochastic element in
the mechanics of damage accumulation. Here we simply note
that if the source—source spacing is less than the fully extended
flaw size at the critical tangency condition, the strength drop
will tend to be immediate. If the sources are more distantly
spaced, the drop-off will be more gradual. Any remaining
strength after coalescence will depend on the variability in the
spatial distribution of the sources.
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III. Microcracking Limits of Al,0,/AL TiO; Composites:
Analysis Using Indentation—Strength Data

(1) Experimental Procedure

We now investigate the predictions of the T-curve analysis
using indentation—strength data for Al,O,/Al,TiO,; composites
of different volume fraction and particle size of the AlLTiO;
phase.

Materials were prepared as described in Section III(1) of Part
I. Batches of material were fabricated with volume fractions
V; = 0.10, 0.20, 0.30, and 0.40, by altering the starting powder
composition. Specimens from each batch were then heat-treated
over a range of aging times® to grow the AL TiO; particles from
their initial size, / < 2 wm, over a range of sizes up to a maxi-
mum / = 12 pm. The matrix grains were observed to scale sim-
ilarly, but remained within a range of negligible influence on
the T-curve."

Strength tests were carried out as in Part 1. Disks for strength
testing were polished, then indented with a Vickers diamond
at a prescribed load P = 5 N. This load is close to the inter-
section point of data sets for the reference composite and base
alumina in Fig. 5 of Part I, i.e., in a region where the strength is
relatively material-insensitive. The disks were then broken in
biaxial flexure to obtain inert strength data. Post-mortem exam-
inations were again made of all broken specimens to confirm
failure initiation from the indentation sites. Means and standard
deviations in strengths were evaluated from 4-6 tests at each
value of V; and /, where possible; beyond the strength falloff
limits (Sect. III(2)), the success rate for breaks at indentations
diminished rapidly, and the data were most often restricted to
individual breaks. '

Some of the specimen surfaces were examined for evidence
of microcracking, both before and after strength testing.

(2) Influence of Volume Fraction and Particle Size on
Microcracking Limits

Figure 2 plots the indentation—strength data as a function of
particle size, a(/), at each of the volume fractions V; = 0.10,
0.20, 0.30, 0.40. We see that, generally, o, falls off with /, ini-
tially slowly and thereafter, beyond a cutoff, precipitously.
Increasing V; shifts the “cliff” progressively to the left of the
plots.

Surface examinations of the specimens showed a correlation
between position on the strength plots in Fig. 2 and the inci-
dence of microcracking. At the top of the cliff, the specimens
gave no indication of multiple flaw extension. In this region the
applied load—displacement curve remained essentially linear.
Over the edge of the cliff, sporadic microcracking could be
detected in the broken specimens using scanning electron
microscopy. At the bottom of the cliff, microcracking was more
prevalent, and the applied load—displacement curve showed
nonlinearity’—in this domain the material may be considered to
be “overaged”. An example of spontaneous microcracking in a
heavily overaged material is shown in Fig. 3. Materials sub-
jected to even more overaging were so heavily microcracked
that, on prolonged exposure (i.e., several days) to moist atmo-
spheres, they began to crumble, with virtually total loss of
strength.

The solid curves at left in each plot are calculated from the
theoretical indentation—strength analysis (Sect. II(3), Part I).
For these calculations, we use the previously defined indenta-
tion coefficients ¢ = 0.77 and x = 0.076, and alumina matrix
toughness T, = 2.75 MPa-m'? (Ref. 11) (Sect. I1I(2), Part I).
We also use the microstructural parameters p = 325 MPa, (p +
q)(2\)'? = 3.51 MPam'? and A = 180 um (Eq. (17), Part I)
defined for our reference composite (V; = 0.20,/ = 4.0 wm);
Eq. (1) is then invoked to scale the bridging stresses p and ¢ for
each new V;, and Eq. (3) to scale bridging zone dimensions \
and A for each new /.

Beyond a critical particle size /* at each V;, evaluated by set-
ting V;(1 — Vp)I* = 0.672 um in accordance with Eq. (5), we
approximate the strength degradation as an infinitely abrupt
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falloff, indicated by the left-hand vertical dashed lines in the
plots. The falloff condition for the reference state at V; = 0.20
may be used to evaluate the parameters A and g (foreshadowed
in Eq. (18), Part I), as follows. Inserting A = 180 um at/ = 4.0
wm (Eq. (17¢), Part I) into Eq. (3b), we obtain €, = 0.067.
Inserting €, into Eq. (5), along withm = 4 and w. = 2.7 (Sect.
1II(2), Part I), plus oy = 7.7 GPa (Eq. (19a), PartI) and £’ =
300 GPa'? for our reference material, yields €5 = 0.013. Then
from Eq. (3a) (again neglecting any variation in £’ with V;) we
have \/I> = 0.44 um~', which enables us to determine \, and
thence g (Eq. 17b), Part I), for each prescribed /.

With this parameter calibration, it is one further step to evalu-
ate the limiting particle sizes /** for spontaneous microcracking
limits from Eq. (7). These limits are included as the right-hand
vertical dashed lines for each V; in Fig. 2.

IV. Implications Concerning Microstructural Design of
Two-Phase Ceramics

(1) Effect of Microstructural Variables on Toughness
Curves

It is apparent from the results in Sect. III of Part I and Sect. ITI
above that incorporation of a second phase is an effective route
to the control of toughness-curve behavior in ceramic compos-
ites. Using a reference composition to calibrate key crack bridg-
ing parameters in the 7-curve relations, one may predict the
effects of microstructural changes on the strength properties of
a given material system. Here, we illustrate specifically with
computed T-curves for a range of hypothetical volume fractions
V; and particle sizes [ for our Al,0,/AlLTiO, system. However,
the generality of the theoretical analysis extends to potential
variations in the internal mismatch stress o (as modified, for
instance, by incorporating a different second phase, or even
changing the matrix).

(A) Volume Fraction (or Residual Stress): Consider first
the influence of volume fraction V; (or o) on the T-curve. In
Fig. 4 we generate T(c) curves (Egs. (6) and (8), Part I) by eval-
uating p and ¢ for V; = 0.10, 0.20, 0.30, and 0.40 in accordance
with Eq. (1) above, keeping A and A in Eq. (3) constant at the
values determined for / = 4.0 pm (Egs. (17¢) and (18a), Part
I). We see that the slope and upper plateau of the curves are
enhanced, and the minimum simultaneously depressed, with
increasing V;. At the same time, the range of crack sizes over
which T(c) varies remains essentially constant. A conspicuous
manifestation of this fixed range is the crossover of all curves
through a common intersection point at ¢ = ¢, = 1100 pm,
T = T, = 2.75 MPa-m'”2. Note that on substituting T = T, into
Eq. (9) of Part I we obtain ¢, = 2(1 + g/p)*A = 2(1 +
1/mue, )N, which is indeed independent of V.

Now suppose a proportion of the natural flaw population
to have initial sizes ¢ = ¢, to the right of the minimum of
any given curve in Fig. 4. The stability of such flaws under
an applied stress g, is then determined by the disposition of
K.(c) = Yo,c'? relative to the shaded line passing through
both the common intersection point (¢ = ¢;, T = T,) and the
origin (cf. Fig. 1). This “transition” line corresponds to a critical
volume fraction V; = V¥ = 0.21 (I = 4.0 wm) in the zero-
intercept linear T—c'” function in Eq. (9) of Part I. In keeping
with the description in Sect. II(2), we distinguish two regions of
material response:

(i) At 0 < V, < V%, the equilibrium configuration
K, = Qo.ci”? = T is unstable; failure occurs from a single,
critical flaw. Note, however, that as V, approaches V* the
strength becomes increasingly insensitive to ;.

(i) AtV* <V, the equilibrium at K, = T, ¢ = ¢ s stable,
and extension proceeds up the T-curve with increasing stress
until the tangency condition dK,/d(c"?) = dT/d(c'?) is met. As
V; increases further beyond V¥ the potential increases for multi-
ple flaw extension and coalescence, with consequent strength
degradation.’



2244 Journal of the American Ceramic Society—Padture et al. Vol. 76, No. 9

1000 T T T T T T T7T] 3 1000 T T T T T T 1] 3
C ] C .
s . N i
—_ — — 300 — é @ 5 ! -
< < o} '
& _.{ oY L : : .
2 . : =3 : :
& 1001 v - & 1001 Lo -
'é E : ' = = = ' ) 3
> IR T I T L :
g - ' i ] g C ©o 4
2 304 : ! . 2 301 o .
L (A)V,=0.10 ) i (B) V;=0.20 )
10 1 1 [ B 10 ! I |
1 2 4 7 10 20 1 2 4 7 10 20
AL TiO; Particle Size, / (um) AL, TiO, Particle Size, [ (um)
(A) (B)
1000¢ T T T T T TT] 3 1000 T T T T T T T 1] .
’\ : ] B O: i N
. 3001 S . 300~ : . -
& L ' : i & L o, i |
s L s 5
= e = i i
© 100 : ' — © 100 ' ! .
= = i : = = - : : -
%‘) - : ] %” - A ]
ZEEP ° | ZINPNE ° ]
(©) v,=030 - (D) V,=0.40
10 1 | [ R | 10 | | [ B B
1 2 4 7 10 20 1 2 4 7 10 20
AL TiO; Particle Size, / (um) AL TiO; Particle Size, ! (um)
(C) (D)

Fig. 2. Strength as function of particle size / for Al,O,/ALTiO; composite, for volume fractions (A) V; = 0.10, (B) V, = 0.20, (C) V; = 0.30,
(D) V; = 0.40, at fixed indentation load P = 5 N. Error bars on datum points are standard deviations; datum points without error bars are individual
results. Solid curves are generated from theoretical analysis in Part I. Vertical dashed curves indicate limiting particle sizes /* and /** evaluated from
Eqgs. (5) and (7).

o NS

Fig. 3. SEM micrograph showing bulk microcracking damage in Al,O,/AL,TiO, composite, V; = 0.30,/ = 5.0 pm (cf. Fig. 2(C)). Micrograph (B)
is enlargement of portion of (A).
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Fig. 4. Predicted T-curves for Al,0,/Al,TiO; composites, for speci-
fied volume fractions V; at fixed particle size / = 4.0 wm. Shaded line is
Kj-fieldatc = ¢, T = T,.

Note that none of the curves for the / = 4.0 wm material in
Fig. 4 intersect the c-axis, nor is there much scope for further
increase in volume fraction. Thus, whereas activated micro-
cracking occurs at V; > 0.21, spontaneous microcracking
strictly should not occur in the material at this particle size.
However, as indicated in Sect. III(2) above, some premature
flaw pop-in may be induced at the higher volume fractions by
prolonged exposure to moisture.

The flaw tolerance characteristics implied in Fig. 4 are more
clearly demonstrated by calculating strength as a function of
initial flaw size, o(c;), using the conventional strength formal-
ism for natural flaws (i.e., Egs. (13) and (14), Part I, at x = 0)
within the domain 0 < V; < V*. Figure 5 shows the results of
such calculations for specified values of V; (/ = 4.0 wm). Con-
sistent with the T-curve description, enlarging V; enhances the
“plateau”, without affecting the extreme long-crack or short-
crack strengths.

(B) Particle Size: Now consider the effect of particle size
I on T(c). In Fig. 6 we generate T(c) functions by adjusting A
and A for/ = 2,4, 6, and 8 pm using Eq. (3) above, keeping p
and ¢ constant at the values determined for V; = 0.20 (Egs.
(17a) and (18b), Part I). Observe that the slope of the “linear”
region of the T7—c'” plot is now invariant, reflecting the indepen-
dence of p and ¢ in Eq. (9) of Part I on /. On the other hand, the

800 T T T TTT] T T T T TTTT]

N [=4.0 um .

Strength, oz (MPa)

N
100 L1l 1 11 |4u|i\
20 50 100 200 500 1000 2000

Initial Flaw Size, ¢, (um)

Fig. 5. Predicted strength as function of initial size of natural flaws
for Al,0,/Al,TiO5 composites, for specified volume fractions V; at fixed
particle size | = 4.0 pm.

Crack Size, ¢ (um'?)

Fig. 6. Predicted T-curves for Al,0,/Al,TiO; composites, for speci-
fied particle sizes / at fixed volume fraction V; = 0.20. Shaded line is’
K.-fieldatc = ¢,, T = T,.

upper plateau toughness is enhanced by increasing the particle
size. Most significantly, the linear region of the curve translates
to the right of the diagram and extends over a greater range of
crack sizes, as / (thus A and A) increases.

Suppose again that a proportion of the population of natural
flaws had initial size ¢ = ¢ to the right of the minimum of the
pertinent curve in Fig. 6. The flaw stability is determined by the
disposition of K ,(c) relative to the shaded line at a critical parti-
cle size = I* = 4.2 um (V; = 0.20). Again, we distinguish
two regions of material response relative to this transition line:

(i) At 0 <[ < I*, the equilibrium is unstable, and failure
occurs from a single flaw. The strength becomes increasingly
insensitive to initial flaw size c; as / approaches /*.

(ii) At/* </, the equilibrium is stable, and the flaws extend
at increasing stress up the 7-curve to failure at the tangency
point. Several flaw sources may be activated. As / increases fur-
ther, toward and beyond /**, the flaws ultimately coalesce, and
strength is degraded.

Figure 7 shows calculated strength as a function of natural
flaw size, op(c;), for specified values of / within 0 < | < [*
(V; = 0.20). Enlarging / depresses the strength plateau, but this
is compensated by expansion of the “plateau” range, with atten-
dant enhancement of the long-crack strength. A similar tradeoff

800 ~—T T TTTTTY T T TTTTT]
N —
V,=0.20
£ 400
)
1<9
©
=
o0
8 200
n
N
00— 1 111l ] [ EEETA
20 50 100 200 500 1000 2000

Initial Flaw Size, c; (um)

Fig. 7. Predicted strength as function of initial size of natural flaws
for Al,0,/Al1,TiO5 composites, for specified particle sizes / at fixed vol-
ume fraction V; = 0.20.
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is evident in an earlier study of the effect of grain size on
strength in base alumina.'”

(2) Microcracking Limits and Design Criteria

In noting how key microstructural parameters enhance cer-
tain characteristics of the T-curve, let us recall an interesting
dichotomy foreshadowed in Sect. II(1): an increased volume
fraction V; (or residual stress o) enhances the slope, but not the
scale (Fig. 4); an increased particle size / enhances the scale, but
not the slope (Fig. 6). We also recall that excessive increases
can lead to bulk microcracking and ultimate strength degrada-
tion. It follows that control of these vital microstructural param-
eters should be an important element in materials design.

In this context, it is useful to consider the design diagram in
Fig. 8, plotted as V(1 — V,)oR (governed by stresses p and g) vs
I (governed by dimensions N and A). Accordingly, the ordinate
measures the slope of the T-curve, the abscissa the scale. The
curves represent the simple inverse relations Eqgs. (5) (inner
curve) and 7 (outer curve). This diagram may be usefully con-
sidered in relation to the three domains of material behavior
identified in Sect. II(2).

(A) No Microcracking (NM): Within the subcritical
domain V; < V¥, | < [I* in Figs. 4 and 6, failure is unstable from
a single flaw at ¢ = ¢;. However, the traditional “Griffith”
condition o « ¢ "? is valid only for materials with single-
valued toughness, corresponding to the fine-grain matrix
material at V; = 0 in Fig. 5 and / = 0 in Fig. 7. A true Griffith
response is therefore realized only at the origin of Fig. 8. As V;
and / grow larger, the material becomes more flaw-tolerant, in
the manner of Figs. 5 and 7, and the composite material
migrates away from the origin along an appropriate configura-
tional path in Fig. 8.

(B) Activated Microcracking (AM): For systems just at
the critical condition V; = V*,/ = [* on the inner curve in Fig.
8, the equilibrium is neutral and the critical flaw undergoes pre-
cursor extension along the linear portion of the 7-c'” curve, to
ultimate failure at c = A + \ (cf. Fig. 1). Now o7 is altogether
independent of ¢,;. As one progresses further beyond the inner
curve and toward the second curve the equilibrium becomes
stable, promoting the incidence of multiple flaw extensions.
Strength o remains independent of ¢, but is compromised by
any coalescence. This is the domain of stress-induced damage
accumulation.

(C) Spontaneous Microcracking (SM): AtV, > V¥* [ >
I**_ small flaw sources may pop-in spontaneously from the left
unstable branch to the right stable branch of the T-curve (e.g., at
| = 8 pm for the V; = 0.2 material in Fig. 6). Damage is there-
fore accumulated even in the absence of an external stress.

Slope Parameter, V(1-V))o,

Scale Parameter, /

Fig. 8. “Design diagram.” Curves are loci of Egs. (5) and (7), deline-
ating regions of no microcracking (N.M.), activated microcracking
(A.M.), and spontaneous microcracking (S.M.). Horizontal shaded line
is constant volume fraction and residual stress line; vertical shaded line
is constant particle size line.
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Again, in the presence of moisture, this state may develop pre-
maturely (Sect. ITI(2)).

To illustrate the design utility of Fig. 8, let us consider varia-
tions in microstructural states along the two shaded lines. These
two shaded lines correspond to the two principal microstruc-
tural modifications considered in this study: along the vertical
line, to volume fraction V; (or residual stress o), as envisaged
in Fig. 4; along the horizontal line, to particle size /, as envis-
aged in Fig. 6. In both cases, translation along the line away
from the axes corresponds to increased flaw tolerance, limited
first by activated then spontaneous microcracking damage as
one intersects the two curves. There is a tradeoff here: increas-
ing V; (or o) progressively restricts the range of / over which
flaw tolerance may be achieved, and vice versa.

This latter tradeoff is implicit in the strength vs flaw-size
plots for our Al,0,/Al,TiO5 composites in Figs. 5 and 7. There,
we have achieved a degree of flaw tolerance by increasing V;
and /, but the relatively high value of oy for this material
restricts the range of flaw sizes axis over which the “plateau”
strength can be sustained without microcracking.

V. Discussion

The simplistic model presented in Parts I and II of this study
provides us with a physical basis for predicting the influence of
important microstructural variables, notably volume fraction V;,
particle size /, and thermal expansion mismatch stress oy, on
toughness-curve and strength properties of two-phase ceramics
that exhibit grain-sliding bridging. Especially insightful is the
distinction made between the influences of V; (and o) on the
slope characteristics (Fig. 4) and [/ on the scale characteristics
(Figs. 6 and 7) of the T-curve. This dichotomy may be usefully
applied in the microstructural tailoring of optimal flaw-tolerant
ceramics for specific structural applications, accordingly to
whether the principal requirement is for preservation of plateau
strength level (increased V;, Fig. 5) or enhancement of plateau
range (increased /, Fig. 7).

The analysis also imposes limits on the potential benefits of
compositional tailoring by the onset of bulk microcracking.
These limits arise naturally in the model from the central role of
internal residual mismatch stresses in the bridging micromecha-
nics. They are most usefully demonstrated in the design dia-
gram construction of Fig. 8. In that diagram, the neutral
equilibrium state defined by the inner curve represents a locus
of optimum flaw tolerance. Beyond that limit, flaw tolerance is
retained and damage can accumulate; but strength may be lost,
from activation and ultimate coalescence of multiple micro-
crack sources. Beyond the outer curve in Fig. 8, bulk micro-
cracking occurs spontaneously, and loss of structural integrity
may be severe. This takes us into the province of refractories,
where the characteristics of individual microcracks (as intro-
duced for example in thermal shock) become subsidiary to
those of the integrated, interactive population. There, the sto-
chastics of microcrack sources and mechanisms of coalescence
are governing factors.'*'* In these microcracking domains, the
tendency to enhanced local microcracking can be highly delete-
rious to microfracture-induced wear resistance. '’

The quantitative capacity of our fracture mechanics model as
a predictive tool is limited by approximations in the starting
equations. We have mentioned that the elliptical-crack profile
relations in Eq. (3) are not self-consistent with the K-field solu-
tions of Sect. ITI(1) in Part I. A self-consistent solution to the
nonlinear displacement-field integral equations® could indeed
be obtained by direct integration over the constant bridging
stress domains of Fig. 3 in Part I, but at the sacrifice of physical
insight. Such a solution will inevitably lead to relations for A
and A that depend on V; as well as on /. Under such conditions
slope and scale characteristics of the 7-curve may no longer be
varied independently via respective adjustments to volume
fraction and particle size (as implied, for instance, in Figs. 4
and 6).
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Fig. 9. Indentation—strength data for Al,0,/ALTiOs; composite, for
volume fraction V; = 0.20 but with exaggerated matrix Al,O, grain size
and agglomerated distributions of Al,TiO; particles. Data from Refs. 6
and 16. Solid curve is empirical fit to data. Compare shaded curve for
base fine-grain alumina, and dashed curve for homogeneous material at
same V; (from Fig. 6, Part I).

Furthermore, the approximation of constant stress domains in
the constitutive stress—separation function s(u) (Fig. 2, Part I) is
clearly oversimplistic; in real ceramics, s(u) is tail-dominated.'
The attendant discontinuities in s(r) at » = ¢ — N and ¢ —
(A + \) (Fig. 3, Part I) could even lead to unphysical, non-
unique crack profile solutions.*>!'” More detailed analyses will
inevitably cause changes in the shapes of the T-curves (Figs. 4
and 6) and the strength plateaus (Figs. 5 and 7). In general,
therefore, we must expect the crucial rising portion of the
toughness function to be considerably more complex than the
“linear” T—c'” representation of Eq. (9) in Part L. In this context
our calibrations of the principal microstructural parameters,
stresses p and ¢ and dimensions A and \, are subject to consid-
erable uncertainty. One must exercise due care when using such
calibrations as a basis for mechanical design, especially when
extrapolating into the short-crack and long-crack regions
beyond the data range. On the other hand, these parameters
remain useful guides to the strength of the underlying bridging
processes responsible for the toughening behavior.

The present study is also subjected to material-specific
restrictions, from the imposition of bulk microcracking limits at
relatively small particle sizes. These restrictions are attributable
to the large residual mismatch stresses in our Al,O,/ALTiO;
composites. Consequently, the current examination of flaw tol-
erance effects have been confined to a small range of particle
sizes (Fig. 2). A more comprehensive study calls for material
system with greater flexibility in the capacity to vary the micro-
structural variables. Such a system might include contributions
to the T-curve from the matrix itself. In the present case of an
alumina matrix, the contributions may become significant for

Model for Toughness Curves in Two-Phase Ceramics: I, Microstructural Variables 2247

grain sizes above ~10 wm.' It has in fact been demonstrated
elsewhere that deliberate incorporation of coarse matrix grains
into Al,O,/AL,TiO, composites can produce further (multiplica-
tive) enhancements of the T-curve.'® Inhomogeneous distribu-
tions of the second phase, e.g., by agglomeration of the
aluminum titanate particles, can also enhance the toughness and

. flaw-tolerance properties. This latter is seen in Fig. 9.>'° Such

spatial variability in microstructural characteristics might prove
to be of even greater importance than variability in flaw size in
accounting for observed scatter in strength data in flaw-tolerant
ceramics, and thus become a critical issue in the processing of
ceramic components for increased reliability.’
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